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ABSTRACT

Exploratory Data Analysis (EDA) is a crucial step in any data science
project. However, existing Python libraries fall short in support-
ing data scientists to complete common EDA tasks for statistical
modeling. Their API design is either too low level, which is opti-
mized for plotting rather than EDA, or too high level, which is hard
to specify more fine-grained EDA tasks. In response, we propose
DataPrep.EDA, a novel task-centric EDA system in Python. Dat-
aPrep.EDA allows data scientists to declaratively specify a wide
range of EDA tasks in different granularity with a single func-
tion call. We identify a number of challenges to implement Dat-
aPrep.EDA, and propose effective solutions to improve the scal-
ability, usability, customizability of the system. In particular, we
discuss some lessons learned from using Dask to build the data
processing pipelines for EDA tasks and describe our approaches
to accelerate the pipelines. We conduct extensive experiments to
compare DataPrep.EDA with Pandas-profiling, the state-of-the-art
EDA system in Python. The experiments show that DataPrep.EDA
significantly outperforms Pandas-profiling in terms of both speed
and user experience. DataPrep.EDA is open-sourced as an EDA
component of DataPrep: https://github.com/sfu-db/dataprep.
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1 INTRODUCTION

Python has grown to be one of the most popular programming lan-
guages in the world [33] and is widely adopted in the data science
community. For example, the Python data science ecosystem, called
PyData, is used by universities and online learning platforms to
teach data science essentials [9, 16, 24, 34]. The ecosystem contains
a wide range of tools such as Pandas for data manipulation and
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Table 1: Comparison of EDA solutions in Python.

Pandas+Plotting Pandas-profiling DataPrep.EDA

Easy to Use X vV V4
Interactive Speed v X Vv
Easy to Customize Vv X Vv

analysis, Matplotlib for data visualization, and Scikit-learn for ma-
chine learning, all aimed towards simplifying different stages of
the data science pipeline.

In this paper we focus on one part of the pipeline, exploratory
data analysis (EDA) for statistical modeling, the process of under-
standing data through data manipulation and visualization. It is an
essential step in every data science project[72]. For statistical mod-
eling, EDA often involves routine tasks such as understanding a
single variable (univariate analysis), understanding the relationship
between two random variables (bivariate analysis), and understand-
ing the impact of missing values (missing value analysis).

Currently, there are two EDA solutions in Python. Each of them
provide APIs in different granularity and have different drawbacks.

Pandas+Plotting. The first one is Pandas+Plotting, where Plot-
ting represents a Python plotting library, such as Matplotlib [52],
Seaborn [68], and Bokeh [42]. Fundamentally, plotting libraries are
not designed for EDA but for plotting. Their APIs are at a very low
level, hence they are not easy to use: To complete an EDA task, a
data scientist needs to think about what plots to create, then using
Pandas to manipulate the data so that it can be fed into a plotting
library to create these plots. Often there is a gap between an EDA
task and the available plots — a data scientist must write lengthy
and repetitive code to bridge the gap.

Pandas-profiling. The second one is Pandas-profiling [43]. It
provides a very high level API and allows a data scientist to generate
a comprehensive profile report. The report has five main sections:
Overview, Variables, Interactions, Correlation,andMissing
Values. Its general utility makes it the most popular EDA library
in Python. As of September, 2020, Pandas-profiling had over 2.5M
downloads on PyPI and over 5.9K GitHub stars.

While Pandas-profiling is effective for one-time profiling, it suf-
fers from two limitations for EDA due to its high-level API design:
(i) Firstly, it does not achieve interactive speed since generating a
profile report often takes a long time. This is suffering as EDA is an
iterative process. Furthermore, the report shows information for all
columns, potentially misdirecting the user and adding processing
time. (ii) Secondly, it is not easy to customize a profile report. In a
profile report, the plots are automatically generated thus it is very
likely that the user wants to fine tune the parameters of each plot
(e.g., the number of bins in a histogram). There could be hundreds
of parameters associated with a profile report. It is not easy for
users to figure out what they can customize and how to customize
to meet their needs.
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Figure 1: The front-end of DataPrep.EDA

Table 1 summarizes the drawbacks of Pandas+Plotting and Pandas-
profiling. The key challenge is how to overcome the limitations of
existing tools and design a new EDA system that can achieve three
design goals: easy to use, with interactive speed, and easy to cus-
tomize. To address this challenge, we build DataPrep.EDA, a novel
task-centric EDA system in Python. We identify a list of common
EDA tasks for statistical modeling, mapping each task to a single
function call through careful API design. As a result of this task-
oriented approach, DataPrep.EDA affords many more fine-grained
tasks such as univariate analysis and correlation analysis. Figure 1-
1 illustrates how our example user might use DataPrep.EDA to
do a univariate analysis task after removing their outliers. The
analyst calls the plot(df, "price") in DataPrep.EDA, where df is a
dataframe and "price" is the column name. DataPrep.EDA detects
price as a numerical variable and automatically generates suitable
statistics (e.g., max, mean, quantile) and plots (e.g., histogram, box
plot), which help the user gain a deeper understanding of the price
column quickly and effectively.

With the task-centric approach, DataPrep.EDA is able to achieve
all three design goals: (i) Easy to Use. Since each EDA task is di-
rectly mapped to a single function call, users only need to think
about what tasks to work on rather than what to plot and how to
plot. To further improve usability, we design an auto-insight com-
ponent to automatically highlight possible interesting patterns in
visualizations. (ii) Interactive Speed. Different from Pandas-profiling,
DataPrep.EDA supports fine-grained tasks thus it can avoid unnec-
essary computation on irrelevant information. To further improve
the speed, we carefully design our data processing pipeline based
on Dask, a scalable computing framework in Python. (iii) Easy
to Customize. With the task-centric API design, the parameters
are grouped by different EDA tasks and each API only contains a
small number of task-related parameters, making it much easier
to customize. Besides, we implement a how-to guide component in
DataPrep.EDA to further improve the customizability.

We conduct extensive experiments to compare DataPrep.EDA
with Pandas-profiling. The performance results on 15 real-world
datasets from Kaggle [19] show that i) DataPrep.EDA responded to
a fine-grained EDA task in seconds while Pandas-profiling spent
several orders of magnitude more time in creating a profile report
on the same dataset; ii) if the task is to create a profile report, Dat-
aPrep.EDA was 4—20x faster than Pandas-profiling. Through a user
study we show that i) real world participants of varying skill levels
completed 2.05 times more tasks on average with DataPrep.EDA
than with Pandas-profiling; ii) DataPrep.EDA helped participants
answering 2.20 times more correct answers.

The following summarizes our contributions:

o We explore the limitations of existing EDA solutions in Python
and propose a task-centric framework to overcome them.

e We design a task-centric EDA API for statistical modeling, allow-
ing to declaratively specify an EDA task in one function call.

We identify three challenges to implement DataPrep.EDA, and
propose effective solutions to enhance the scalability, usability,
and customizability of the system.

e We conduct extensive experiments to compare DataPrep.EDA
with Pandas-profiling, the state-of-the-art EDA system in Python.
The results show that DataPrep.EDA significantly outperforms
Pandas-profiling in speed, effectiveness, and user preference.

2 RELATED WORK

EDA Tools in Python and R. Python and R are the two most
popular programming languages in data science. Similar to Python,
there are many EDA libraries in R including DataExplorer [10]
and visdat [66] (see [64] for a recent survey). However, they are
either similar to Pandas+Plotting or Pandas-profiling, thus having
the same limitations as them. In the database community, recently,
there is a growing interest in building EDA systems for Python
programmers in order to benefit a large number of real-world data
scientists [20, 48]. To the best our knowledge, DataPrep.EDA is the
first task-centric EDA system in Python, and the only EDA system
dedicated specifically to the notion of task-centric EDA.

GUI-based EDA. A GUI-based environment is commonly used for
doing EDA, particularly among non-programmers. In such an envi-
ronment, an EDA task is triggered by a click, drag, drop, etc (rather
than a Python function call). Many commercial systems including
Tableau [32], Excel [21], Spotfire [35], Qlik [25], Splunk [29], Al-
teryx [3], SAS [27], JMP [18] and SPSS [17] support doing EDA
using a GUL Although these systems are suitable in many cases,
they all have the fundamental limitations of being removed from
the programming environment and lacking flexibility.

In recent years, there has been abundant research in visualization
recommendation systems [46, 49, 51, 55-57, 63, 70, 71]. Visualiza-
tion recommendation is the process of automatically determining
an interesting visualization and presenting it to the user. Another
related area is automated insight generation (auto-insights). An
auto-insight system mines a dataset for statistical properties of inter-
est [22, 47, 50, 54, 65, 67]. Unlike these systems, DataPrep.EDA is a
programming-based EDA tool that has several advantages over GUI-
based EDA systems including seamless integration in the Python
data science ecosystem, and flexibility since the data scientist is not
restricted to one GUI’s functionalities.



Data Profiling. Data profiling is the process of deriving sum-
mary information (e.g., data types, the number of unique values
in columns) from a dataset (see [39] for a data profiling survey).
Metanome [58] is a data profiling platform where the user can
run profiling algorithms on their data to generate different sum-
mary information. Data profiling can be used in the tasks of data
quality assessment (e.g., Profiler [53]) and data cleaning (e.g., Pot-
ter’'s Wheel [61]). Although DataPrep.EDA performs data profiling,
unlike the above systems it is integrated effectively in a Python
programming environment.

Python data profiling tools including Pandas-profiling [43], Sweet-
viz [31], and AutoViz [5], enable profiling a dataset by running one
line of code. These systems provide rigid and coarse-grained analy-
sis which are not suitable for general, ad-hoc EDA.

3 TASK-CENTRIC EDA

In this section, we first introduce common EDA tasks for statistical
modeling, and then describe our task-centric EDA API design.

3.1 Common EDA Tasks for Statistical Modeling

Inspired by the profile report generated by Pandas-profiling and
existing work [41, 59, 62], we identify five common EDA tasks. We
will use a running example to illustrate why they are needed in the
process of statistical modeling.

Suppose a data scientist wants to build a regression model to
predict house prices. The training data consists of four features
(size, year_built, city, and house_type) and the target (price).

e Overview. At the beginning, the data scientist has no idea about
what’s inside the dataset, so she wants to get a quick overview of
the entire dataset. This involves computing some basic statistics
and creating some simple visualizations. For example, she may
want to check the number of features, the data type of each
feature (numerical or categorical), and create a histogram for each
numerical feature and a bar chart for each categorical feature.

e Correlation Analysis. To select important features or identify
redundant features, correlation analysis is commonly used. It
computes a correlation matrix, where each cell in the matrix
represents the correlation between two columns. A correlation
matrix can show which features are highly correlated with the
target and which two features are highly correlated with each
other. For example, if the feature, size, is highly correlated with
the target, price, then knowing size will reveal a lot of informa-
tion about price, thus it is an important feature. If two features,
city and house_type, are highly correlated, then one of the
features is redundant and can be removed

e Missing Value Analysis. It is more common than not for a
dataset to have missing values. The data scientist needs to cre-
ate customized visualizations to understand missing values. For
example, she may create a bar chart, which depicts the amount
of missing values in each column, or a missing spectrum plot,
which visualizes which rows has more missing values.

e Univariate Analysis. Univariate analysis aims to gain a deeper
understanding of a single column. It creates various statistics and
visualizations of that column. For example, to deeply understand
the feature year_built, the data scientist may want to compute
the min, max, distinct count, median, variance of year_built,
and create a box plot to examine outliers, a normal Q-Q plot to
compare its distribution with the normal distribution.

e Bivariate Analysis. Bivariate analysis is to understand the re-
lationship between two columns (e.g., a feature and the target).
There are many visualizations to facilitate the understanding. For
example, to understand the relationship between year_built
and price, she may want to create a scatter plot to check whether
they have a linear relationship, and a hexbin plot to check the
distribution of price in different year ranges.

There are certainly other EDA tasks used for statistical modeling,
however we have opted to focus on the main tasks systems such as
Pandas-profiling commonly present in their reports. This allows us
to make a fair comparison between our system design approaches.
In the future we intend to address more tasks, such as time-series
analysis and multi-variate analysis (more than two variables).

3.2 DataPrep.EDA’s Task-Centric API Design

The goal of our API design is to enable the user to trigger an EDA
task through a single function call. We consider simplicity and con-
sistency as the principle of API design. The simple and consistent
API makes our system more accessible in practice [44]. However, it
is challenging to design simple and consistent APIs for a variety
of EDA tasks. Our key observation is that the EDA tasks for statis-
tical modeling tend to follow a similar pattern [69]: start with an
overview analysis and then dive into detailed analysis. Hence, we
design the API in the following form:

plot_tasktype(df, col_list, config),

where plot_tasktype is the function name, tasktype is a concise
description of the task, the first argument is a DataFrame, the second
argument is a list of column names, and the third argument is a
dictionary of configuration parameters. If column names are not
specified, the task will be performed on all the columns in the
DataFrame (overview analysis); otherwise, it will be performed on
the specified column(s) (detailed analysis). This design makes the
API extensible, i.e., it is easy to add an API for a new task.
Following this pattern, we design three functions in DataPrep.EDA

to support the five EDA tasks:

plot. We use the plot(:) function with different arguments to
represent the overview task, the univariate analysis task, and the
bivariate analysis task, respectively. To understand how to perform
EDA effectively with this function, the following gives the syntax
of the function call with the intent of the data scientist:

e plot(df): “I want an overview of the dataset”

e plot(df, coly): “I want to understand col;”

e plot(df, coly, coly): “I want to understand the relationship
between col; and coly”

plot_correlation. The plot_correlation(-) function triggers the
correlation analysis task. The user can get more detailed corre-
lation analysis results by calling plot_correlation(df, col;) or
plot_correlation(df, coly, coly).

e plot_correlation(df): “I want an overview of the correlation
analysis result of the dataset”

e plot_correlation(df, col;): “I want to understand the correla-
tion between col; and the other columns”

e plot_correlation(df, coly, coly): “I want to understand the
correlation between col; and cols”

plot_missing. The plot_missing(-) function triggers the missing
value analysis task. Similar to plot_correlation(:), the user can



EDA Task ‘ Task-Centric API Design ‘ Corresponding Stats/Plots
Overview plot(df) Dataset statistics, histogram or bar chart for each column
Univariate (1) N — Column statistics, histogram, KDE plot, normal Q-Q plot, box plot
. plot(df, col1) . . .
Analysis (2) C — Column statistics, bar chart, pie chart, word cloud, word frequencies
L (1) NN — Scatter plot, hexbin plot, binned box plot
Bivariate . L
Analysis plot(df, cols, colz) (2) NC or CN — Categorical box plot, multi-line chart
(3) CC— Nested bar chart, stacked bar chart, heat map
plot_correlation(df) Correlation matrix, computed with Pearson, Spearman, and KendallTau
izgﬁil:}zlon plot_correlation(df, col,) Correlation vector, computed with Pearson, Spearman, and KendallTau
plot_correlation(df, col,, col,) Scatter plot with a regression line
plot_missing(df) Bar chart, missing spectrum plot, nullity correlation heatmap, dendrogram
lel:zsi;r;?sValue plot_missing(df, col,) Histogram or bar chart that shows the impact of the missing values in col; on all other columns
plot_missing(df, col,, col,) Histogram, PDF, CDF, and box plot that show the impact of the missing values from col; on col,

Figure 2: A set of mapping rules between EDA tasks and corresponding stats/plots (N = Numerical, C = Categorical)

call plot_missing(df, colj) or plot_missing(df, colj, colp) to get
more detailed analysis results.

e plot_missing(df): “I want an overview of the missing value
analysis result of the dataset”

e plot_missing(df, col;): “I want to understand the impact of
removing the missing values from col; on other columns”

e plot_missing(df, colj, coly): “I want to understand the im-
pact of removing the missing values from col; on coly”

The key observation that makes task-centric EDA possible is
that there are nearly universal kinds of stats or plots that analysts
employ in a given EDA task. For example, if the user wants to
perform univariate analysis on a numerical column, she will create a
histogram to check the distribution, a box plot to check the outliers,
a normal Q-Q plot to compare with the normal distribution, etc.
Based on this observation, we pre-define a set of mapping rules
as shown in Figure 2, where each rule defines what stats/plots to
create for each EDA task. Once a function, e.g., plot (df, "price"),
is called, DataPrep.EDA first detects the data type of price, which
is numerical. Based on the second row in Figure 2, since col; = N,
DataPrep.EDA will automatically generate the column statistics,
histogram, KDE plot, normal Q-Q plot, and box plot of price.

The mapping rules are selected from existing literature and open-
source tools in the statistics and machine learning community. For
univariate, bivariate, and correlation analysis, we refer to the data-
to-viz project [13], ‘Exploratory Graphs’ section in [59] and Section
4 in [62]. For overview analysis and missing value analysis, the
mapping rules are derived from the Pandas-profiling library and
the Missingno library [41], respectively. DataPrep.EDA also lever-
ages the open-source community to keep adding and improving
its rules. For example, one user has created an issue in our GitHub
repository to suggest adding violin plots to the plot (df,x) func-
tion. As DataPrep.EDA is being used by more users, we expect to
see more suggestions like this in the future.

4 SYSTEM ARCHITECTURE

This section describes DataPrep.EDA’s front-end user experience
and introduces the back-end system architecture.

4.1 Front-end User Experience

To demonstrate DataPrep.EDA, we will continue our house price
prediction example, using DataPrep.EDA to assist in removing out-
liers from the price variable, assessing the resulting distribution,
and determining how to further customize the analysis. Figure 1 de-
picts the steps to perform this task using Pandas and DataPrep.EDA
in a Jupyter notebook. Part € shows the required code: in line 1,

the records with an outlying price value are removed (the thresh-
old is $1,400,000), and in line 2 the DataPrep.EDA function plot
is called to analyze the filtered distribution of the variable price.
Part @ shows the progress bar. Part @ shows the default output
tab which consists of tables containing various statistics of the
column’s distribution. Note that each data visualization is output
in a separate panel, and tabs are used to navigate between panels.

o Auto-Insight. If an insight is discovered by DataPrep.EDA, a
(@) icon will be shown on the top right corner of the associated
plot. Part @ shows an insight associated with the histogram plot:
price is normally distributed.

e How-to Guide. A how-to guide will pop up after clicking a
(@) icon. As shown in Part @), it contains the information about
customizing the associated plot. In this example, the data scientist
may want to create a histogram with more bins, so she can copy
the code ("hist.bins":50) in the how-to guide, paste it as a
parameter to the plot function, and increase the number of bins
from 50 to 200 as shown in Part .

4.2 Back-end System Architecture

The DataPrep.EDA back-end is presented in Figure 3, consisting of
three components: (D The Config Manager configures the system’s
parameters, (2) the Compute module performs the computations on
the data, and 3) the Render module creates the visualizations and
layouts. The Config Manager is used to organize the user-defined
parameters and set default parameters in order to avoid setting
and passing many parameters through the Compute and Render
modules. The separation of the Compute module and the Render
module has two benefits: First, the computations can be distributed
to multiple visualizations. For example, in plot(df, colj=N) in
Figure 2, the column statistics, normal Q-Q plot, and box plot all
require quantiles of the distribution. Therefore, the quantiles are
computed once and distributed appropriately to each visualization.
Second, the intermediate computations (see Section 4.2.2) can be
exposed to the user. This allows the user to create the visualizations
with her desired plotting library.

4.2.1 Config Manager. The Config Manager (O in Figure 3) sets
values for all configurable parameters in DataPrep.EDA, and stores
them in a data structure, called the config, which is passed through
the rest of the system. Many components of DataPrep.EDA are
configurable including which visualizations to produce, the insight
thresholds (see Section 4.2.2), and visualization customizations such
as the size of the figures. In Figure 3, the plot function is called
with the user specification bins=50; the Config Manager sets each
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Figure 3: The DataPrep.EDA system architecture

bin parameter to have a value of 50, and default values are set for
parameters not specified by the user. The config is then passed to
the Compute and Render modules and referenced when needed.

4.2.2 Compute module. The Compute module takes the data
and config as input, and computes the intermediates. The
intermediates are the results of all the computations on the data
that are required to generate the visualizations for the EDA task. Fig-
ure 3 shows example intermediates. The first element is the count
of missing values which is shown in the Stats tab, and the next
two elements are the counts and bin endpoints of the histogram.
Such statistics are ready to be fed into a visualization.

Insights are calculated in the Compute module. A data fact is
classified as an insight if its value is above a threshold (each insight
has its own, user-definable threshold). For example, in Figure 1
(Part ®), the distinct value count is high, so the entry in the table is
highlighted red to alert the user about this insight. DataPrep.EDA
supports a variety of insights including data quality insights (e.g.,
missing, infinite values), distribution shape insights (e.g., uniformity,
skewness) and whether two distributions are similar.

We developed two optimization techniques to increase perfor-
mance. First, we share computations between multiple visualiza-
tions as described in the beginning of Section 4.2. Second, we lever-
age Dask to parallelize computations (see Section 5 for details).

4.2.3 Render module. The last system component is the Render
module, which converts the intermediates into data visualiza-
tions. There is a plethora of Python plotting libraries (e.g., Mat-
plotlib, Seaborn, and Bokeh), however, they provide limited or no
support for customizing a plot’s layout. A layout is the surrounding
environment in which visualizations are organized and embedded.
Our layouts need to consolidate many elements including charts,
tables, insights, and how-to guides. To meet our needs, we use
the library Bokeh to create the plots, and embed them in our own
HTML/JS layout.

5 IMPLEMENTATION

In this section, we introduce the detailed implementation of Dat-
aPrep.EDA’s Compute module. We first introduce the background of
Dask and discuss why we choose Dask as the back-end engine. We
then present our ideas for using Dask to optimize DataPrep.EDA.

5.1 Why Dask

Dask Background. Dask is an open source library providing scal-
able analytics in Python. It offers similar APIs and data structures
with other popular Python libraries, such as NumPy, Pandas, and
Scikit-Learn. Internally, it partitions data into chunks, and runs
computations over chunks in parallel.

The computations in Dask are lazy. Dask will first construct
a computational graph that expresses the relationship between

tasks. Then, it optimizes the graph to reduce computations such
as removing unnecessary operators. Finally, it executes the graph
when an eager operation like compute is called.

Choice of Back-end Engine. We use Dask as the back-end engine
of DataPrep.EDA for three reasons: (i) it is lightweight and fast in
a single-node environment, (ii) it can scale to a distributed cluster,
and (iii) it can optimize the computations required for multiple
visualizations via lazy evaluation. We considered other engines like
Spark variants [38, 73] (PySpark and Koalas) and Modin [60], but
found that they were less suitable for DataPrep.EDA than Dask.
Since Spark is designed for computations on very big data (TB to
PB) in a large cluster, PySpark and Koalas are not lightweight like
Dask and have a high scheduling overhead on a single node. For
Modin, most of its operations are eager, so for each operation a
separate computational graph is created. This approach does not
optimize across operations, unlike Dask’s approach. In Section 6.2,
we further justify our choice to use Dask experimentally.

5.2 Performance Optimization

Given an EDA task, e.g., plot_missing(df), we discuss how to
efficiently compute its intermediates using Dask. We observe that
there are many redundant computations between visualizations.
For example, as shown in Figure 2, plot_missing(df) creates four
visualizations (bar chart, missing spectrum plot, nullity correlation
heatmap, and dendrogram). They share many computations, such as
computing the number of rows, checking whether a cell is missing
or not. To leverage Dask to remove redundant computations, we
seek to express all the computations in a single computational graph.
To implement this idea, we can make all the computations lazy and
call an eager operation at the end. In this way, Dask will optimize
the whole graph before actual computations happen.

However, there are several issues with this implementation. In
the following, we will discuss them and propose our solutions.

Dask graph fails to build. The first issue is that the rechunk
function in Dask cannot be directly incorporated into the big com-
putational graph. This is because that its first argument, a Dask
array, requires knowing the chunk size information, i.e., the size of
each chunk in each dimension. If rechunk was put into our com-
putational graph, an error would be raised since the chunk size
information is unknown for a delayed Dask array.

Since rechunk is needed in multiple plot functions in Dat-
aPrep.EDA, we have to address this issue. One solution is to replace
the rechunk function call in each plot function with the code writ-
ten by the low-level Dask task graph API. However, this solution
has a high engineering cost, which requires writing hundreds of
lines of Dask code. It also has a high maintenance cost compared
to using the Dask built-in rechunk function.

We propose to add an additional stage before constructing the
computational graph. In this stage, we precompute the chunk size
information of the dataset and pass the precomputed chunk size
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to the Dask graph. In this way, the Dask graph can be constructed
successfully by adding one line of code.

Dask is slow on tiny data. Although putting all possible opera-
tions in the graph can fully leverage Dask’s optimizations, it also
increases the overhead caused by scheduling. When data is large,
the scheduling overhead is negligible compared to the computing
overhead. However, when data is tiny, the scheduling may be the
bottleneck and using Dask is less efficient than using Pandas.

For the nine plot functions in Figure 2, we observe that they all
follow the same pattern: the computational graph takes as input
a DataFrame (large data) and continuously reduces its size by ag-
gregation, filtering, etc. Based on this observation, we separate the
computational graph into two parts: Dask Computation and Pandas
Computation. In the Dask Computation, the data is computed in
Dask and the result is transformed into a Pandas DataFrame. In
the Pandas Computation, it takes the DataFrame as input and does
some further processing to generate the intermediate results, which
will be used to create visualizations.

Currently, we heuristically determine the boundary between the
two parts. For example, the computation for plot_correlation(df) is
separated into two stages. In the first stage we use Dask to compute
the correlation matrix from the user input and then in the second
stage we use Pandas to transform and filter the correlation matrix.
This is because for a dataset with n rows and m columns, it is
usually the case that n >> m. As a result, it would be beneficial
to let Pandas handle the correlation matrix, which has the size
m X m. Since we only need to handle nine plot functions, it is still
manageable. We will investigate how to automatically separate the
two parts in the future.

Putting everything together. Figure 4 shows the data process-
ing pipeline in the Compute module of DataPrep.EDA. When data
comes, DataPrep.EDA first precomputes the chunk size informa-
tion using Dask. After that, it constructs the computational graph
using Dask again with the precomputed chunk size filled. Then, it
computes the graph. After that, it transforms the computed data
into Pandas and finishes the Pandas computation. In the end, the
intermediates are returned.

6 EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments to evaluate the
efficiency and the user experience of DataPrep.EDA.

6.1 Performance Evaluation

We first evaluate the performance of DataPrep.EDA by compar-
ing its report functionality with Pandas-profiling. Afterwards, we
conduct a self comparison, which evaluates each plot function and
their different variations (no column, single column, and double
column), in order to gain a deep understanding of the performance.

We used 15 different datasets varying in number of rows, number
of columns and categorical/numerical column ratio, as listed in
Table 2. The experiments were performed on an Ubuntu 16.04 Linux
server with 64 GB memory and 8 Intel E7-4830 cores.

Table 2: Comparing DataPrep.EDA with Pandas-profiling on
15 real-world data science datasets from Kaggle (N = Numer-
ical, C = Categorical, PP=Pandas-profiling).

Dataset Size  #Rows #Cols (N/C) PP DataPrep Faster
heart [14] 11IKB 303 14 (14/0)  17.7s  2.0s  8.6x
diabetes [23] 23KB 768 9 (9/0) 283s  16s 177X
automobile [4] 26KB 205 26 (10/16)  38.2s 3.9s  9.8x
titanic [36] 64KB 891 12 (7/5) 17.8s 2.1s 8.5X
women [37] 500KB 8553 10 (5/5) 19.8s 2.3s 8.6X
credit [11]  27MB 30K  25(25/0)  127.0s  6.1s  20.8x
solar [28] 28MB 33K 11 (7/4) 251s  27s 93X
suicide [30]  2.8MB 28K 12 (6/6) 206s 285  7.4x
diamonds [12] 3MB 54K 11 (8/3) 28.2s 3.1s 9%
chess [8] 7.3MB 20K 16 (6/10) 23.6s 43s  5.5X
adult [2] 57MB 49K 15 (6/9) 2325 40s 58X
basketball [6] 9.2MB 53K  31(21/10) 126.2s  9.9s  12.7X
conflicts [1]  13MB 34K  25(10/15) 34.9s  86s  4x
rain [26] 135MB 142K 24 (17/7)  100.1s  11.6s 8.6
hotel [15] 16MB 119K 32 (20/12) 83.2s 13s 6.4X

To test the general efficiency of DataPrep.EDA, we compared the
end-to-end running time required to generate reports over the 15
datasets in both tools. For Pandas-profiling, we first used read_csv
from Pandas to read the data, then we created a report in Pandas-
profiling with PhiK, Recoded and Cramer’s V correlations disabled
(since DataPrep.EDA does not implement these correlation types).
For DataPrep.EDA, we used read_csv from Dask to read the dataset.
Since it is a one-time task to create a profiling report, loading the
data using the most suitable function for each tool is reasonable.
Results are shown in Table 2. We observe that using DataPrep.EDA
to generate reports is 4x ~ 20x faster compared to Pandas-profiling
in general. The acceleration mainly comes from the optimization
to make the tasks into a single Dask graph so that they can be
fully parallelized by Dask. We also observe that DataPrep.EDA
usually gains more performance compared to Pandas-profiling on
numerical data and data with fewer categorical columns (driving
performance on credit, basketball, and diabetes).

6.1.1 Self-comparison. We analyzed the run times of Dat-
aPrep.EDA’s functions on the 15 datasets to determine how different
functions may pose a bottleneck in different datasets, and whether
our functions can complete within a reasonable response time for
interactivity. Figure 5 shows the relative percentage of time on
plot(df),plot_correlation(df),andplot_missing(df).Note
that no DataPrep.EDA function suffered a significant performance
decrease as data size increases compared to the other functions.
plot(df) was on average 2 ~ 3x slower than plot_missing(df)
and plot_correlation(df). This can be attributed to the nu-
merous insight computations required for plot (df). We also see
that plot_correlation(df) took a larger proportion of time on
datasets with more numerical columns (as anticipated).

Next, we analyzed the run times of fine-grained Dat-
aPrep.EDA functions. We ran plot (), plot_correlation(), and
plot_missing() for each column in each dataset, and we ran the
three functions for all unique pairs of columns in each dataset (lim-
ited to categorical columns with no more than 100 unique values for
plot(df, colj, coly) so the resulting visualizations contain a rea-
sonable amount of information). Figure 6 shows the percent of total
tasks for each function that finish within 0.5, 1, 2 and 5 seconds. Note
that dataset loading time is also included in the reported run times.
The majority of tasks completed within 1 second for each function
except plot_missing(df, colj). plot_missing(df, col;) is
computationally intensive because it computes two frequency dis-
tributions for each column (before and after dropping the missing
values in column coly).
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Figure 5: The relative percent of total time (shown in x axis
labels) for each DataPrep.EDA function. The datasets are or-
dered in increasing size from left to right.

6.2 Experiments on Large Data

We conduct experiments to justify the choice of Dask (see Sec-
tion 5.1) and evaluate the scalability of DataPrep.EDA. We use the
bitcoin dataset [7] which contains 4.7 million rows and 8 columns.
6.2.1 Comparing Engines. We compare the time required for Dask,
Modin, Koalas, and PySpark to compute the intermediates of
plot(df). The results are shown in Figure 7(a). The reason why Dask
is the fastest is explained in Section 5.1: Modin eagerly evaluates the
computations and does not make full use of parallelization when
computing multiple visualizations, and Koalas/PySpark have a high
scheduling overhead in a single-node environment.

6.2.2 Varying Data Size. To evaluate the scalability of Dat-
aPrep.EDA, we compare the report functionality of DataPrep.EDA
with Pandas-profiling and vary the data size from 10 million to 100
million rows. The data size is increased by repeated duplication. The
results are shown in Figure 7(b). Both DataPrep.EDA and Pandas-
profiling scale linearly, but DataPrep.EDA is around six times faster.
This is because DataPrep.EDA leverages lazy evaluation to express
all the computations in a single computational graph so that the
computations can be fully parallelized by Dask.

6.2.3 Varying # of Nodes. To evaluate the performance of Dat-
aPrep.EDA in a cluster environment, we run the report functionality
on a cluster and vary the number of nodes. The cluster consists of
a maximum of 8 nodes, each with 64GB of memory and 16 2.0GHz
E7-4830 CPUs dedicated to the Dask workers. There are also HDFS
services running on the 8 nodes for data storage; the memory for
these services is not shared with the Dask workers. The data is
fixed at 100 million rows and stored in HDFS. We do not compare
with Pandas-profiling since it cannot run on a cluster. The result
is shown in Figure 7(c). We can see that DataPrep.EDA is able to
run on a cluster and achieves better performance as increasing the
number of nodes. This is because adding more compute nodes can
reduce the I/O cost of reading data from HDFS. It is worth noting
that the 1 worker setting in Figure 7(c) is different from the single
node setting in Figure 7(b) where the former needs to read data
from HDFS while the latter reads data from a local disk. Therefore,
the 1 worker setting took longer to process 100 million rows than
the single node setting.

6.3 User Study

Finally, we conducted a user study to validate the usability of our
tool and its utility in supporting analytics. We focus on two ques-
tions using Pandas-profiling as a comparison baseline: (1) For differ-
ent groups of participants, how do they benefit from the task-centric
features introduced by DataPrep.EDA, and (2) Does DataPrep.EDA

plot(df, col,) plot(df, col,, col)
05 359 % 273 %
1 78.39 % 86.84 %
2 97.07 % 100 %
5 99.63 %

plot_correlation(df, col,) plot_correlation(df, col,, col,)

05 4128% 46.97%
1 64.53% 80.72%
2 100 % 100 %
5

plot_missing(df, col,, col,)

0501 33% 54.09%
1 3333% 8361%
2 6227 % 100 %
5
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Figure 6: The percentage of tasks to finish within the given

time constraint.

reduce participants’ false discovery rate. We hypothesize that the
intuitive API in DataPrep.EDA will lead participants to complete
more tasks in less time versus Pandas-profiling, and that the ad-
ditional tools provided by DataPrep.EDA will help participants to
reduce their false discovery rate.

Methodology. In our study, all recruited participants used both
DataPrep.EDA and Pandas-profiling to complete two different sets
of tasks in a 50 minute session with software logging: one tool is
used for one set of tasks. Afterwards, they assessed both systems in
surveys. Our study employs two datasets paired with task sets: (1)
BirdStrike: 12 columns related to bird strike damage on airplanes.
The dataset compiles approximately 220, 000 strike reports from
2,050 USA airports and 310 foreign airports. (2) DelayedFlights: 14
columns related to the causes of flight cancellations or delays. The
dataset is curated by the Department of Transportation of United
States, and contains 5, 819, 079 records of cancelled flights.

We followed a within-subjects design, with all participants mak-
ing use of either tool to complete one set of tasks. We counterbal-
anced our allocation to account for all tool-dataset permutations
and order effects. Within each task, participants finished five se-
quential tasks using one tool. As experience might influence how
much an individual benefits from each tool, we recruited both
skilled and novice analysts using a pre-screen concerning knowl-
edge of python, data analysis, and the datasets in the study. To make
sure that all participants had base knowledge of how to use both
Pandas-profiling and DataPrep.EDA, we gave participants with two
introductory videos, a cheat sheet, and API documentation.

Participants were asked to complete 5 tasks sequentially using
the data analysis tool. The tasks are designed to evaluate differ-
ent functions provided by DataPrep.EDA, which is similar to the
design of existing work [40]. They cover a relatively wide spec-
trum of the kinds of tasks that are frequently encountered in EDA,
including gathering descriptive multivariate statistics of one or mul-
tiple columns, identifying missing values, and finding correlations.
Though datasets have their own specific task instructions, each
of the respective items shares the same goal across both datasets.
For example, the first task of both sessions asks participants to
investigate data distribution over multiple columns.

In Task 1-3, participants use the provided tool to analyze the
distribution of single or multiple columns. Participants conduct
a univariate analysis in task 1 and a variate analysis in task 2.
The task 3 asked the participant to examine distribution skewness.
Task 4 examines missing values and their impact. Participants are
expected to examine the distribution of missing values to come to a
conclusion. Task 5 asks users to find columns with high correlation.

We use the fraction WM to show the relative accuracy
completedtasks

of participants, since we noticed that a number of participants failed
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Figure 8: Relative Accuracy of DataPrep.EDA and Pandas-
profiling across different skill levels of participants in
dataset BirdStrike and DelayedFlights.

to finish tasks. Compared to traditional accuracy, relative accuracy
therefore may better demonstrate positive discovery rate [45].

Examining Participants’ Performance. We examine accuracy
and completed tasks to evaluate system performance. The average
number of completed tasks per participant using DataPrep.EDA
(M:4.02, SD:1.21) was 2.05 times higher than that using Pandas-
profiling (M:1.96, SD: 2.59, t(29)=5.26, p < .00001). When we com-
pared skill levels, we could detect no difference (t(14)=.882998,
p < .441499). Together, this suggests that DataPrep.EDA generally
improved participants’ efficiency in performing EDA tasks. Fac-
toring in dataset, we find that Pandas-profiling performs better
in small datasets(M:3, SD:4.13) compared to a more complex one
(M:1.1, SD:1.20, t(14)=—3.26062, p < .0028). As dataset complexity
grows, Pandas-profiling fails to scale up. No participants finished
all tasks, and 42% finished at most one task using Pandas-profiling.
On the other hand, 35% of DataPrep.EDA participants finished all
five tasks for the delayed dataset. We did not observe a dataset
difference for DataPrep.EDA (t(14)=—0.66, p < .51), which suggests
that it scaled well and might have pushed participants towards an
efficiency ceiling.

In terms of the number of correct answers versus ground truth,
participants who used DataPrep.EDA (M:3.72, SD:0.06) were 2.2
times more accurate compared to those using Pandas-profiling
(M:1.70, SD:3.56, t(29)=2.791, p < .001), which suggests that Dat-
aPrep.EDA better assisted users in analyzing and reduced the risk of
false discoveries. We again found that there was no significant dif-
ference detected between datasets (t(14)=.4156, p < .1299), however,
as in completed tasks, we find that Pandas-profiling did a signif-
icantly better job for small datasets and failed to guide users for
larger ones (t(14)=—1.27, p < .00042). These results are encourag-
ing: DataPrep.EDA can help participants with different skill-levels
complete many tasks with fewer errors.

As the number of completed tasks affects the amount of
(in)correct answers, we used our relative accuracy metric. The av-
erage relative accuracy of DataPrep.EDA (M: .82, SD: 0.07) among

participants was 1.5 times higher than Pandas-profiling (M: .53,
SD: 1.35). Considering expertise and dataset complexity (Figure 8),
we find that users from both skill levels achieve similar relative
accuracy in both datasets, but skilled participants did significantly
better than novice participants only for Pandas-profiling in com-
plex datasets. This suggests that DataPrep.EDA performed better
at leveling skill differences and dataset complexity.

Qualitative feedback. In our post-survey we also asked partici-
pants to share comments and feedback to add context to the per-
formance differences we observed. In our quantitative results, par-
ticipants often referenced the responsiveness and efficiency of Dat-
aPrep.EDA (“fast and responsive”) and took issue with the speed
of Pandas-profiling (“it didn’t work, took forever to process”, "I
would also like to use Pandas-profiling if the efficiency is not the
bottleneck"). We also asked how more granular information af-
fected their performance. Participants reflected that they felt more
control (“I can find the necessary information very quickly, and
that really helps a lot for me to solve the problems and questions
very quickly”, “felt like I had more control, simpler results”) and
accessible (“I find all the answers I need, and DataPrep.EDA is more
easy to understand”).

7 CONCLUSION & FUTURE WORK

In this paper, we proposed a task-centric EDA tool design pattern
and built such a system in Python, called DataPrep.EDA. We care-
fully designed the API in DataPrep.EDA, mapping common EDA
tasks in statistical modeling to corresponding stats/plots. Addition-
ally, DataPrep.EDA provides tools for automatically generating
insights and providing guides. Through our implementation, we
discussed several issues in building data processing pipelines using
Dask and presented our solutions. We conducted a performance
evaluation on 15 real-world data science datasets from Kaggle and
a user study with 32 participants. The results showed that Dat-
aPrep.EDA significantly outperformed Pandas-profiling in terms of
both speed and user experience.

We believe that task-centric EDA is a promising research direc-
tion. There are many interesting research problems to explore in
the future. Firstly, there are some other EDA tasks for statistical
modeling. For example, time-series analysis is a common EDA task
in finance (e.g., stock price analysis). It would be interesting to study
how to design a task-centric API for these tasks as well. Secondly,
we notice that the speedup of DataPrep.EDA over Pandas tends
to get small when IO becomes the bottleneck. We plan to investi-
gate how to reduce IO cost using data compression techniques and
column store. Thirdly, we plan to leverage sampling and sketches
to speed up computation. The challenges are i) how to detect the
scenarios of applying sampling/sketches; ii) how to notify users of
the possible risk of sampling/sketches in a user-friendly way.
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