
Are Powerful Graph Neural Nets Necessary?
A Dissection on Graph Classification

Ting Chen
University of California, Los Angeles

tingchen@cs.ucla.edu

Song Bian
Zhejiang University

songbian@zju.edu.cn

Yizhou Sun
University of California, Los Angeles

yzsun@cs.ucla.edu

Abstract

Graph Neural Nets (GNNs) have received increasing attentions, partially due to
their superior performance in many node and graph classification tasks. However,
there is a lack of understanding on what they are learning and how sophisticated the
learned graph functions are. In this work, we first propose Graph Feature Network
(GFN), a simple lightweight neural net defined on a set of graph augmented features.
We then propose a dissection of GNNs on graph classification into two parts: 1)
the graph filtering, where graph-based neighbor aggregations are performed, and 2)
the set function, where a set of hidden node features are composed for prediction.
We prove that GFN can be derived by linearizing graph filtering part of GNNs,
and leverage it to test the importance of the two parts separately. Empirically we
perform evaluations on common graph classification benchmarks. To our surprise,
we find that, despite the simplification, GFN could match or exceed the best
accuracies produced by recently proposed GNNs, with a fraction of computation
cost. Our results suggest that linear graph filtering with non-linear set function is
powerful enough, and common graph classification benchmarks seem inadequate
for testing advanced GNN variants. 1

1 Introduction

Recent years have seen increasing attention to Graph Neural Nets (GNNs) [14, 12, 2, 10], which
have achieved superior performance in many graph tasks, such as node classification [10, 17] and
graph classification [16, 18]. Different from traditional neural networks that are defined on regular
structures such as sequences or images, graphs provide a more general abstraction for structured
data, which subsume regular structures as special cases. The power of GNNs is that they can directly
define learnable compositional function on (arbitrary) graphs, thus extending classic networks (e.g.
CNNs, RNNs) to more irregular and general domains.

Despite their success, it is unclear what GNNs have learned, and how sophisticated the learned
graph functions are. It is shown in [22] that traditional CNNs used in image recognition have
learned complex hierarchical and compositional features, and that deep non-linear computation can
be beneficial [6]. Is this also the case when applying GNNs to common graph problems? Recently,
[17] showed that, for common node classification benchmarks, non-linearity can be removed in
GNNs without suffering much loss of performance. The resulting linear GNNs collapse into a logistic
regression on graph propagated features. This raises doubts on the necessity of complex GNNs,

1Our code is available at: https://github.com/chentingpc/gfn.
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which require much more expensive computation, for node classification benchmarks. Here we take a
step further dissecting GNNs, and examine the necessity of complex GNN parts on more challenging
graph classification benchmarks [20, 23, 18].

To better understand GNNs on graph classification, we dissect it into two parts/stages: 1) the graph
filtering part, where graph-based neighbor aggregations are performed, and 2) the set function part,
where a set of hidden node features are composed for prediction. We aim to test the importance of
both parts separately, and seek answers to the following questions. Do we need a sophisticated graph
filtering function for a particular task or dataset? And if we have a powerful set function, is it enough
to use a simple graph filtering function?

To answer these questions, we first propose Graph Feature Network (GFN), a simple lightweight
neural net defined on a set of graph augmented features. Unlike GNNs, which learn a multi-step
neighbor aggregation function on graphs [1, 4], the GFN only utilizes graphs in constructing its input
features. It first augments nodes with graph structural and propagated features, and then learns a
neural net directly on the set of nodes (i.e. a bag of graph pre-processed feature vectors), which
makes GFN a fast approximation to GNN. We then prove that GFN can be derived by linearizing the
graph filtering part of a GNN, and leverage this connection to design experiments to probe both GNN
parts separately.

Empirically, we perform evaluations on common graph classification benchmarks [20, 23, 18], and
find that GFN can match or exceed the best accuracies produced by recently proposed GNNs, at a
fraction of the computation cost. This result casts doubts on the necessity of non-linear graph filtering,
and suggests that the existing GNNs may not have learned more sophisticated graph functions than
linear neighbor aggregation on these benchmarks. Our ablations on GFN further demonstrate the
importance of non-linear set function, as its linearization can hurt performance significantly.

Summary of contributions. We propose Graph Feature Network (GFN): a simple and lightweight
model for graph classification. We dissect GNNs on graph classification and leverage GFN to
study the necessity of complex GNN parts. Empirically we show GFN trains faster and matches
the best performance of GNNs. Our results provide new perspectives on the functions that GNNs
learn, and also suggest the current benchmarks for evaluating them are inadequate (not sufficiently
differentiating).

2 Preliminaries

Graph classification problem. We use G = (V,E) ∈ G to denote a graph, where V is a set of
vertices/nodes, and E is a set of edges. We further denote an attributed graph as GX = (G,X) ∈ GX ,
where X ∈ Rn×d are node attributes with n = |V |. It is assumed that each attributed graph is
associated with some label y ∈ Y , where Y is a set of pre-defined categories. The goal in graph
classification problem is to learn a mapping function f : GX → Y , such that we can predict the
target class for unseen graphs accurately. Many real world problems can be formulated as graph
classification problems, such as social and biological graph classification [20, 10].

Graph neural networks. Graph Neural Networks (GNNs) define functions on the space of at-
tributed graph GX . Typically, the graph function, GNN(G,X), learns a multiple-step transformation
of the original attributes/signals for final node level or graph level prediction. In each of the step t, a
new node presentation, h(t)v is learned. Initially, h(1)v is initialized with the node attribute vector, and
during each subsequent step, a neighbor aggregation function is applied to generate the new node
representation. More specifically, common neighbor aggregation functions for the v-th node take the
following form:

h(t)v = f

(
h(t−1)v ,

{
h(t−1)u |u ∈ N (v)

})
, (1)

whereN (v) is a set of neighboring nodes of node v. To instantiate this neighbor aggregation function,
[10] proposes the Graph Convolutional Network (GCN) aggregation scheme as follows.

h(t+1)
v = σ

( ∑
u∈N (v)

Ãuv(W (t))Th(t)u

)
, (2)
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where W (t) ∈ Rd×d′
is the learnable transformation weight, Ã = D̃−1/2(A + εI)D̃−1/2 is the

normalized adjacency matrix with ε as a constant (ε = 1 in [10]) and D̃ii =
∑

j Aij + ε. σ(·) is a
non-linear activation function, such as ReLU. This transformation can also be written as H(t+1) =
σ(ÃH(t)W (t)), where H(t) ∈ Rn×d are the hidden states of all nodes at t-th step.

More sophisticated neighbor aggregation schemes are also proposed, such as GraphSAGE [5]
which allows pooling and recurrent aggregation over neighboring nodes. Most recently, in Graph
Isomorphism Network (GIN) [19], a more powerful aggregation function is proposed as follows.

h(t)v = MLP(t)

((
1 + ε(t)

)
h(t−1)v +

∑
u∈N (v)

h(t−1)u

)
, (3)

where MLP abbreviates for multi-layer perceptrons and ε(t) can either be zero or a learnable parameter.

Finally, in order to generate graph level representation hG, a readout function is used, which generally
takes the following form:

hG = g

({
h(T )
v |v ∈ G

})
. (4)

This can be instantiated by a global sum pooling, i.e. hG =
∑n

v=1 h
(T )
v followed by fully connected

layers to generate the categorical or numerical output.

3 Approach

3.1 Graph feature network

Our model is motivated by the question whether, with a powerful graph readout function, we can
simplify the sophisticated multi-step neighbor aggregation functions (such as Eq. 2 and 3). Therefore
we propose Graph Feature Network (GFN): a neural set function defined on a set of graph augmented
features.

Graph augmented features. In GFN, we replace the sophisticated neighbor aggregation functions
(such as Eq. 2 and 3) with graph augmented features based on GX . Here we consider two categories
as follows: 1) graph structural/topological features, which are related to the intrinsic graph structure,
such as node degrees, or node centrality scores2, but do not rely on node attributes; 2) graph
propagated features, which leverage the graph as a medium to propagate node attributes. The graph
augmented features XG can be seen as the output of a feature extraction function defined on the
attributed graph, i.e. XG = γ(G,X), and Eq. 5 below gives a specific form, which combine node
degree features and multi-scale graph propagated features as follows:

XG = γ(G,X) =

[
d, X, Ã1X, Ã2X, · · · , ÃKX

]
, (5)

where d ∈ Rn×1 is the degree vector for all nodes, and Ã is similar to that in [10], but other designs
of propagation operator are possible [11]. Features separated by comma are concatenated to form
XG.

Neural set function. To build a powerful graph readout function based on graph augmented
features XG, we use a neural set function. The neural set function discards the graph structures
and learns purely based on the set of augmented node features. Motivated by the general form of
a permutation-invariant set function shown in [21], we define our neural set function for GFN as
follows:

GFN(G,X) = ρ

(∑
v∈V

φ

(
XG

v

))
. (6)

Both φ(·) and ρ(·) are parameterized by neural networks. Concretely, we parameterize the function
φ(·) as a multi-layer perceptron (MLP), i.e. φ(x) = σ(σ(· · ·σ(xTW (1)) · · · )W (T )). Note that a
single layer of φ(·) resembles a graph convolution layer H(t+1) = σ(ÃH(t)W (t)) with adjacency
matrix Ã replaced by identity matrix I (a.k.a. 1 × 1 convolution). As for the function ρ(·), we
parameterize it with another MLP (i.e. fully connected layers in this case).

2We only use node degree in this work as it is very efficient to calculate during both training and inference.
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Computation efficiency. GFN provides a way to approximate GNN with less computation over-
heads, especially during the training process. Since the graph augmented features can be pre-computed
before training starts, the graph structures are not involved in the iterative training process. This
brings the following advantages. First, since there is no neighbor aggregation step in GFN, it reduces
computational complexity. To see this, one can compare a single layer feature transformation function
in GFN, i.e. σ(HW ), against the neighbor aggregation function in GCN, i.e. σ(ÃHW ). Secondly,
since graph augmented features of different scales are readily available from the input layer, GFN
can leverage them much earlier, thus may require fewer transformation layers. Lastly, it also eases
the implementation related overhead, since the neighbor aggregation operation in graphs are typically
implemented by sparse matrix operations.

3.2 From GNN to GFN: a dissection of GNNs

To better understand GNNs on graph classification, we propose a formal dissection/decomposition of
GNNs into two parts/stages: the graph filtering part and the set function part. As we shall see shortly,
the simplification of the graph filtering part allows us to derive GFN from GNN, and also be able to
assess the importance of the two GNN parts separately.

To make concepts more clear, we first give formal definitions of the two GNN parts in the dissection.
Definition 1. (Graph filtering) A graph filtering function, Y = FG(X), performs a transformation
of input signals based on the graph G, which takes a set of signals X ∈ Rn×d and outputs another
set of filtered signals Y ∈ Rm×d′

.

Graph filtering in most existing GNNs consists of multi-step neighbor aggregation operations, i.e.
multiple steps of Eq. 1. For example, in GCN [10], the multi-step neighbor aggregation can be
expressed as H(T ) = σ(Aσ(...σ(AXW (1))...)W (T )).

Definition 2. (Set function) A set function, y = T (Y ), takes a set of vectors Y ∈ Rm×d′
where

their order does not matter, and outputs a task specific prediction y ∈ Y .

The graph readout function in Eq. 4 is a set function, which enables the graph level prediction that
is permutation invariant w.r.t. nodes in the graph. Although a typical readout function is simply a
global pooling [19], the set function can be as complicated as Eq. 6.
Claim 1. A GNN that is a mapping of GX → Y can be decomposed into a graph filtering function
followed by a set function, i.e. GNN(G,X) = T ◦ FG(X).

This claim is obvious for the neighbor aggregation framework defined by Eq. 1 and 4, where most
existing GNN variants such as GCN, GraphSAGE and GIN follow. This claim is also general, even
for unforeseen GNN variants that do not explicitly follow this framework 3.

We aim to assess the importance of two GNN parts separately. However, it is worth pointing out that
the above decomposition is not unique in general, and the functionality of the two parts can overlap:
if the graph filtering part has fully transformed graph features, then a simple set function may be
used for prediction. This makes it challenging to answer the question: do we need a sophisticated
graph filtering part for a particular task or dataset, especially when a powerful set function is used?
To better disentangle these two parts and study their importance more independently, similar to [17],
we propose to simplify the graph filtering part by linearizing it.
Definition 3. (Linear graph filtering) We say a graph filtering function FG(X) is linear w.r.t. X iff
it can be expressed as FG(X) = Γ(G,X)θ, where Γ(G,X) is a linear map of X , and θ is the only
learnable parameter.

Intuitively, one can construct a linear graph filtering by removing the non-linear operations from
graph filtering part in existing GNNs, such as non-linear activation function σ(·) in Eq. 2 or 3.
By doing so, the graph filtering becomes linear w.r.t. X, thus multi-layer weights collapse into a
single linear transformation, described by θ. More concretely, let us consider a linearized GCN [10],
its K-th layer can be written as H(K) = ÃKX(ΠK

k=1W
(k)), and we can rewrite the weights with

θ = ΠK
k=1W

(k).

3We can absorb the set function T into FG. That is, let the output Y = FG(·) be final logits for pre-defined
classes and set T (·) to softmax function with zero temperature, i.e. exp(x/τ)/Z with τ → 0

4



The linearization of graph filtering part enables us to disentangle graph filtering and the set function
more thoroughly: the graph filtering part mainly constructs graph augmented features (by setting
γ(G,X) = Γ(G,X)), and the set function learns to compose them for the graph-level prediction.
This leads to the proposed GFN. In other words, GNNs with a linear graph filtering part can be
expressed as GFN with appropriate graph augmented features. This is shown more formally in the
following proposition 1.

Proposition 1. Let GNNlin(G,X) be a mapping of GX → Y that has a linear graph filtering part,
i.e. FG(X) = Γ(G,X)θ, then we have GNNlin(G,X) = GFN(G,X), where γ(G,X) = Γ(G,X).

The proof can be found in the appendix.

Why GFN? We have shown that GFN can be derived from GNN by linearizing its graph filtering
function 4, and GFN can be more efficient than GNN counterpart. Beyond being a fast approximation,
GFN can also help us design experiments to understand the functions that GNNs learned and the
current benchmarks for evaluating them. First, by comparing GNN with linear graph filtering (i.e.
GFN) against standard GNN with non-linear graph filtering, we can assess the importance of non-
linear graph filtering part. Secondly, by comparing GFN with linear set function against standard
GFN with non-linear set function, we can assess the importance of non-linear set function. The
outcomes of these comparisons can also help us judge the complexity of the benchmark, assuming
complex tasks/datasets require both non-linear GNN parts.

4 Experiments

4.1 Datasets and settings

Datasets. The main datasets we consider are commonly used graph classification benchmarks [20,
18, 19]. The graphs in the collection can be categorized into two categories: (1) biological graphs,
including MUTAG, NCI1, PROTEINS, D&D, ENZYMES; and (2) social graphs, including COLLAB,
IMDB-Binary (IMDB-B), IMDB-Multi (IMDB-M), Reddit-Multi-5K (RE-M5K), Reddit-Multi-12K
(RE-M12K). It is worth noting that the social graphs have no node attributes, while the biological
graphs come with categorical node attributes. The detailed statistics can be found in the appendix. In
addition to the common graph benchmarks, we also consider image classification on MNIST where
pixels are treated as nodes and eight nearest neighbors in the grid, with an extra self-loop, are used to
construct the graph.

Baselines. We compare with two families of baselines. The first family of baselines are kernel-
based, namely the Weisfeiler-Lehman subtree kernel (WL) [15], Deep Graph Kernel (DGK) [20] and
AWE [8] that incorporate kernel-based methods with learning-based approach to learn embeddings.
The second family of baselines are GNN-based models, which include recently proposed PATCHY-
SAN (PSCN) [13], Deep Graph CNN (DGCNN) [23], CapsGNN [18] and GIN [19].

For the above baselines, we use their accuracies reported in the original papers, following the same
evaluation setting as in [19]. Architecture and hyper-parameters can make a difference, so to enable a
better controlled comparison between GFN and GNN, we also implement Graph Convolutional Net-
works (GCN) from [10]. More specifically, our GCN model contains a dense feature transformation
layer, i.e. H(2) = σ(XW (1)), followed by three GCN layers, i.e. H(t+1) = σ(ÃH(t)W (t)). We
also vary the number of GCN layers in our ablation study. To enable graph level prediction, we add a
global sum pooling, followed by two fully-connected layers that produce categorical probability over
pre-defined categories.

Model configurations. For the proposed GFN, we mirror our GCN model configuration to allow
direct comparison. Therefore, we use the same architecture, parameterization and training setup,
but replace the GCN layer with feature transformation layers (totaling four such layers). Converting
GCN layer to feature transformation layer is equivalent to setting A = I in in GCN layers. We also
construct a faster GFN, namely “GFN-light”, that contains only a single feature transformation layer,
which can further reduce the training time while maintaining similar performance.

4A small exception is GFNs whose feature extraction function γ(G,X) is not a linear map of X (the one
defined by Eq. 5 is not the case).
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Table 1: Test accuracies (%) for biological graphs. The best results per dataset and in average are
highlighted. - means the results are not available for a particular dataset.

Algorithm MUTAG NCI1 PROTEINS D&D ENZYMES Average

WL 82.05±0.36 82.19±0.18 74.68±0.49 79.78±0.36 52.22±1.26 74.18
AWE 87.87±9.76 - - 71.51±4.02 35.77±5.93 -
DGK 87.44±2.72 80.31±0.46 75.68±0.54 73.50±1.01 53.43±0.91 74.07

PSCN 88.95±4.37 76.34±1.68 75.00±2.51 76.27±2.64 - -
DGCNN 85.83±1.66 74.44±0.47 75.54±0.94 79.37±0.94 51.00±7.29 73.24
CapsGNN 86.67±6.88 78.35±1.55 76.28±3.63 75.38±4.17 54.67±5.67 74.27
GIN 89.40±5.60 82.70±1.70 76.20±2.80 - - -

GCN 87.20±5.11 83.65±1.69 75.65±3.24 79.12±3.07 66.50±6.91 78.42
GFN 90.84±7.22 82.77±1.49 76.46±4.06 78.78±3.49 70.17±5.58 79.80
GFN-light 89.89±7.14 81.43±1.65 77.44±3.77 78.62±5.43 69.50±7.37 79.38

Table 2: Test accuracies (%) for social graphs. The best results per dataset and in average are
highlighted. - means the results are not available for a particular dataset.

Algorithm COLLAB IMDB-B IMDB-M RE-M5K RE-M12K Average

WL 79.02±1.77 73.40±4.63 49.33±4.75 49.44±2.36 38.18±1.30 57.87
AWE 73.93±1.94 74.45±5.83 51.54±3.61 50.46±1.91 39.20±2.09 57.92
DGK 73.09±0.25 66.96±0.56 44.55±0.52 41.27±0.18 32.22±0.10 51.62

PSCN 72.60±2.15 71.00±2.29 45.23±2.84 49.10±0.70 41.32±0.42 55.85
DGCNN 73.76±0.49 70.03±0.86 47.83±0.85 48.70±4.54 - -
CapsGNN 79.62±0.91 73.10±4.83 50.27±2.65 52.88±1.48 46.62±1.90 60.50
GIN 80.20±1.90 75.10±5.10 52.30±2.80 57.50±1.50 - -

GCN 81.72±1.64 73.30±5.29 51.20±5.13 56.81±2.37 49.31±1.44 62.47
GFN 81.50±2.42 73.00±4.35 51.80±5.16 57.59±2.40 49.43±1.36 62.66
GFN-light 81.34±1.73 73.00±4.29 51.20±5.71 57.11±1.46 49.75±1.19 62.48

For both our GCN and GFN, we utilize ReLU activation and batch normalization [7], and fix the
hidden dimensionality to 128. No regularization is applied. Furthermore we use batch size of 128,
a fixed learning rate of 0.001, and the Adam optimizer [9]. To compare with existing work, we
follow [18, 19] and perform 10-fold cross validation. We run the model for 100 epochs, and select the
epoch in the same way as [19], i.e., a single epoch with the best cross-validation accuracy averaged
over the 10 folds is selected. We report the average and standard deviation of test accuracies at the
selected epoch over 10 folds.

In terms of input node features for the proposed GFN, by default, we use both degree and multi-scale
propagated features (up to K = 3), that is [d, X, Ã1X, Ã2X, Ã3X]. We turn discrete features into
one-hot vectors, and also discretize degree features into one-hot vectors, as suggested in [3]. We set
X = ~1 for the social graphs we consider as there are no node attributes. By default, we also augment
node features in our GCN with an extra node degree feature (to counter that the normalized adjacency
matrix may lose the degree information). Other graph augmented features are also studied for GCN.

For MNIST, we train and evaluate on the given train/test split. Additionally, since MNIST benefits
more from deeper GCN layers, we parameterize our GCN model using a residual network [6]
with multiple GCN blocks, the number of blocks are kept the same for GCN and GFN, and varied
according to the size of total receptive field. GFN utilizes the same multi-scale features as in Eq. 5.
All experiments are run on Nvidia GTX 1080 Ti GPU.

4.2 Performance comparison between GFN and existing GNN variants

Biological and social datasets. Table 1 and 2 show the results of different methods in both biolog-
ical and social datasets. It is worth noting that in both datasets, GFN achieves similar performances
with our GCN, and match or exceed existing state-of-the-art results on multiple datasets. This

6
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Figure 1: Training time comparisons. The annotation, e.g. 1.0×, denotes speedup compared to GCN.

Table 4: Accuracies (%) under various augmented features. Averaged results over multiple datasets
are shown here. A1,2,3X is abbreviated for A1X,A2X,A3X , and default node feature X is always
used (if available) but not displayed to reduce clutter. Best results per row/block are highlighted.

Graphs Model None d A1X A1,2X A1,2,3X d, A1X d, A1,2X d, A1,2,3X

Bio. GCN 78.52 78.51 78.23 78.24 78.68 79.10 79.26 79.69
GFN 76.27 77.84 78.78 79.09 79.17 78.71 79.21 79.13

Soical GCN 34.02 62.35 59.20 60.39 60.28 62.45 62.71 62.77
GFN 30.45 60.79 58.04 59.83 60.09 62.47 62.63 62.60

suggests that GFN could very well approximate GCN (and other GNN variants) for these benchmarks.
This result also casts doubt on the necessity of non-linear graph filtering for these benchmarks.

Table 3: Test accuracies
(%) on MNIST graphs.

Receptive
size

GCN GFN

3 91.47 87.73
5 95.16 91.83
7 96.14 92.68

MNIST pixel graphs. We report the accuracies under different total
receptive field sizes (i.e. the number of hops a pixel could condition its
computation on). Results in Table 3 show that, in all three different recep-
tive field sizes, GCN with non-linear neighbor aggregation outperforms
GFN with linear graph propagated features. This indicates that non-linear
graph filtering is essential for performing well in this dataset. Note that
our results are not directly comparable to traditional CNN’s, as our GNN
does not distinguish the neighbor pixel direction in its parameterization,
and a global sum pooling of pixels does not leverage spatial information.
For context, when using coordinates as features both GCN and GFN
achieve nearly 99% accuracy.

4.3 Training time comparisons between GFNs and GCNs

We compare the training time of our GCN and the proposed GFNs. Figure 1 shows that a significant
speedup (from 1.4× to 6.7× as fast) by utilizing GFN compared to GCN, especially for datasets with
denser edges such as the COLLAB dataset. Also since our GFN can work with fewer transformation
layers, GFN-light can achieve better speedup by reducing the number of transformation layers. Note
that our GCN is already very efficient as it is built on a highly optimized framework [3].

4.4 Ablations on features, architectures, and visualization

Node features. To better understand the impact of features, we test both models with different
input node features. Table 4 shows that 1) graph features are very important for both GFN and GCN,
2) the node degree feature is surprisingly important, and multi-scale features can further improve
on that, and 3) even with multi-scale features, GCN still performs similarly to GFN, which further
suggests that linear graph filtering is enough. More detailed results (per dataset) can be found in the
appendix.

Architecture depth and linear set function. We vary the number of convolutional layers (with
two FC-layers after sum pooling kept the same), and also test the necessity of a non-linear set function
by constructing GFN-flat. GFN-flat contains no feature transform layer, but just the global sum

7



Table 5: Accuracies (%) under different number of Conv. layers. Flat denotes the collapsed GFN into
a linear model (i.e. linearizing the set function).

Flat 1 2 3 4 5

Bio. GCN - 77.17 79.38 78.86 78.75 78.21
GFN 69.54 79.59 79.77 79.78 78.99 78.14

Soical GCN - 60.69 62.12 62.37 62.70 62.46
GFN 58.41 62.70 62.88 62.81 62.80 62.60

(a) Random samples. (b) Mis-classified samples by GFN.

Figure 2: Random and mis-classified samples from IMDB-B. Each row represents a (true) class.

pooling followed by a single fully connected layer (mimicking multi-class logistic regression). Table
5 shows that 1) GCN benefits from multiple grpah convolutional layers with a significant diminishing
return, 2) GFN with single feature transformation layer works pretty well already, likely due to
the availability of multi-scale input node features, which otherwise require multiple GCN layers to
obtain, and 3) by collapsing GFN into a linear model (i.e. linearizing set function) the performance
degenerates significantly, which demonstrates the importance of non-linear set function.

Visualization. Figure 2 shows visualization of random and misclassified samples from the IMDB-
B dataset. We could not clearly distinguish graphs from different classes easily based on their
appearance, suggesting that both GFN and GCN are capturing underlying non-trivial features. More
visualization from different datasets can be found in the appendix.

5 Discussion

In this work, we conduct a dissection of GNNs based on the proposed Graph Feature Network. GFN
can be seen as a simplified GNN with linear graph filtering and non-linear set function, thus it can be
used as a tool to assess and understand the complexity of learned GNNs. Empirically, we evaluate the
approach on common graph classification benchmarks, and show that GFN can match or exceed the
best results by recently proposed GNNs, with a fraction of computation cost. Our results also provide
the following new perspectives on both the functions that GNNs learn and the current benchmarks for
evaluating them.

First, the fact that GCN with linear graph filtering (i.e. our GFN) performs comparably to our GCN
under the same hyper-parameter settings on the tested benchmarks, suggests that non-linear graph
filtering is not essential, and the GCN, potentially other GNN variants as well, may not have learned
more sophisticated graph functions than linear neighbor aggregation. However, we find the non-linear
set function is important, and its linearization leads to poor results.

Secondly, when we test on graphs constructed from image dataset (MNIST), the similarly configured
GCN outperforms GFN by a large margin, indicating the importance of non-linear graph filtering for
this type of graph dataset.

Finally, the contrasting results on the two types of graphs above seem to suggest that the commonly
used graph classification benchmarks [20, 23, 18] are inadequate and not sufficiently differentiating,
since linear graph filtering is powerful enough to perform well. For this reason, we encourage the
community to explore and adopt more convincing benchmarks for testing advanced GNN variants, or
include GFN as a standard baseline to provide a sanity check.
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A Proofs

Here we provide the proof for Proposition 1.

Proof. According to claim 1 and definition 3, a GNN(G,X) with a linear graph filtering part, denoted
by GNNlin(G,X), can be written as follows.

GNNlin(G,X) = T ◦ FG(X) = T (Γ(G,X)θ) = T ′(Γ(G,X)),

where θ is absorbed into the set function T ′(·). According to GFN’s definition in Eq. 6 and general
set function result from [21], we have

GFN(G,X) = T ′′(XG) = T ′′(γ(G,X)).

By setting γ(G,X) = Γ(G,X), we arrive at GNNlin(G,X) = GFN(G,X).

B Detailed statistics of datasets

Detailed statistics of the biological and social graph datasets are listed in Table 6 and 7, respectively.

Table 6: Data statistics of Biological dataset
Dataset MUTAG NCI1 PROTEINS D&D ENZYMES

# graphs 188 4110 1113 1178 600
# classes 2 2 2 2 6
# features 7 37 3 82 3
Avg # nodes 17.93 29.87 39.06 284.32 32.63
Avg # edges 19.79 32.30 72.82 715.66 62.14

Table 7: Data statistics of Social dataset
Dataset COLLAB IMDB-B IMDB-M RE-M5K RE-12K

# graphs 5000 1000 1500 4999 11929
# classes 3 2 3 5 11
# features 1 1 1 1 1
Avg # nodes 74.49 19.77 13.00 508.52 391.41
Avg # edges 2457.78 96.53 65.94 594.87 456.89

C Detailed performances with different features

Table 8 show the performances under different graph features for GNNs and GFNs. It is evident that
both model benefit significantly from graph features, especially GFNs.

D Detailed performances with different architecture depths

Table 9 shows performance per datasets under different number of layers.

E Detailed visualizations

Figure 3, 4, 6, and 5 show the random and mis-classified samples for MUTAG, PROTEINS, IMDB-B,
and IMDB-M, respectively. In general, it is difficult to find the patterns of each class by visually
examining the graphs. And the mis-classified patterns are not visually distinguishable, except for
IMDB-B/IMDB-M datasets where there are some graphs seem ambiguous.
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Table 8: Accuracies (%) under various augmented features. A1..3X is abbreviated for
A1X,A2X,A3X , and default node feature X is always used (if available) but not displayed to
reduce clutter.

Dataset Model None d A1X A1,2X A1..3X d, A1X d, A1,2X d, A1..3X

MUTAG GCN 83.48 87.09 83.35 83.43 85.56 87.18 87.62 88.73
GFN 82.21 89.31 87.59 87.17 86.62 89.42 89.28 88.26

NCI1 GCN 80.15 83.24 82.62 83.11 82.60 83.38 83.63 83.50
GFN 70.83 75.50 80.95 82.80 83.50 81.92 82.41 82.84

PROTEINS GCN 74.49 76.28 74.48 75.47 76.54 77.09 76.91 77.45
GFN 74.93 76.63 76.01 75.74 76.64 76.37 76.46 77.09

DD GCN 79.29 78.78 78.70 77.67 78.18 78.35 78.79 79.12
GFN 78.70 77.77 77.85 77.43 78.28 77.34 76.92 78.11

ENZYMES GCN 75.17 67.17 72.00 71.50 70.50 69.50 69.33 69.67
GFN 74.67 70.00 71.50 72.33 70.83 68.50 71.00 69.33

COLLAB GCN 39.69 82.14 76.62 76.98 77.22 82.14 82.24 82.20
GFN 31.57 80.36 76.40 77.08 77.04 81.28 81.62 81.26

IMDB-B GCN 51.00 73.00 70.30 71.10 72.20 73.50 73.80 73.70
GFN 50.00 73.30 72.30 71.30 71.70 74.40 73.20 73.90

IMDB-M GCN 35.00 50.33 45.53 46.33 45.73 50.20 50.73 51.00
GFN 33.33 51.20 46.80 46.67 46.47 51.93 51.93 51.73

RE-M5K GCN 28.48 56.99 54.97 57.43 56.55 56.67 56.75 57.01
GFN 20.00 54.23 51.11 55.85 56.35 56.45 57.01 56.71

RE-M12K GCN 15.93 49.28 48.58 50.11 49.71 49.73 50.03 49.92
GFN 17.33 44.86 43.61 48.25 48.87 48.31 49.37 49.39

Table 9: Accuracies (%) under different number of Conv. layers. Flat denotes the collapsed GFN into
a linear model (i.e. linearizing the set function).

Dataset Method Flat 1 2 3 4 5

MUTAG GCN - 88.32 90.89 87.65 88.31 87.68
GFN 82.85 90.34 89.39 88.18 87.59 87.18

NCI1 GCN - 75.62 81.41 83.04 82.94 83.31
GFN 68.61 81.77 83.09 82.85 82.80 83.09

PROTEINS GCN - 76.91 76.99 77.00 76.19 75.29
GFN 75.65 77.71 77.09 77.17 76.28 75.92

DD GCN - 77.34 77.93 78.95 79.46 78.77
GFN 76.75 78.44 78.78 79.04 78.45 76.32

ENZYMES GCN - 67.67 69.67 67.67 66.83 66.00
GFN 43.83 69.67 70.50 71.67 69.83 68.17

COLLAB GCN - 80.36 81.86 81.40 81.90 81.78
GFN 75.72 81.24 82.04 81.36 82.18 81.72

IMDB-B GCN - 72.60 72.30 73.30 73.80 73.40
GFN 73.10 73.50 73.30 74.00 73.90 73.60

IMDB-M GCN - 51.53 51.07 50.87 51.53 50.60
GFN 50.40 51.73 52.13 51.93 51.87 51.40

RE-M5K GCN - 54.05 56.49 56.83 56.73 56.89
GFN 52.97 57.45 57.13 57.21 56.61 57.03

RE-M12K GCN - 44.91 48.87 49.45 49.52 49.61
GFN 39.84 49.58 49.82 49.54 49.44 49.27
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(a) Random samples. (b) Mis-classified samples by GFN.

(c) Random samples. (d) Mis-classified samples by GCN.

Figure 3: Random and mis-classified samples from MUTAG. Each row represents a (true) class.

(a) Random samples (b) Mis-classified samples by GFN.

(c) Random samples. (d) Mis-classified samples by GCN.

Figure 4: Random and mis-classified samples from PROTEINS. Each row represents a (true) class.
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(a) Random samples. (b) Mis-classified samples by GFN.

(c) Random samples. (d) Mis-classified samples by GCN.

Figure 5: Random and mis-classified samples from IMDB-B. Each row represents a (true) class.

(a) Random samples. (b) Mis-classified samples by GFN.

(c) Random samples. (d) Mis-classified samples by GCN.

Figure 6: Random and mis-classified samples from IMDB-M. Each row represents a (true) class.
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