
SimGNN: A Neural Network Approach
to Fast Graph Similarity Computation

Yunsheng Bai1, Hao Ding2, Song Bian3, Ting Chen1, Yizhou Sun1, Wei Wang1
1University of California, Los Angeles, CA, USA

2Purdue University, IN, USA
3Zhejiang University, China

yba@ucla.edu, ding209@purdue.edu, biansonghz@gmail.com,
{tingchen,yzsun,weiwang}@cs.ucla.edu

ABSTRACT
Graph similarity search is among the most important graph-based
applications, e.g. finding the chemical compounds that are most
similar to a query compound. Graph similarity/distance computa-
tion, such as Graph Edit Distance (GED) and Maximum Common
Subgraph (MCS), is the core operation of graph similarity search
and many other applications, but very costly to compute in practice.
Inspired by the recent success of neural network approaches to
several graph applications, such as node or graph classification,
we propose a novel neural network based approach to address
this classic yet challenging graph problem, aiming to alleviate the
computational burden while preserving a good performance.

The proposed approach, called SimGNN, combines two strategies.
First, we design a learnable embedding function that maps every
graph into an embedding vector, which provides a global summary
of a graph. A novel attention mechanism is proposed to emphasize
the important nodes with respect to a specific similarity metric.
Second, we design a pairwise node comparison method to sup-
plement the graph-level embeddings with fine-grained node-level
information. Our model achieves better generalization on unseen
graphs, and in the worst case runs in quadratic time with respect to
the number of nodes in two graphs. Taking GED computation as an
example, experimental results on three real graph datasets demon-
strate the effectiveness and efficiency of our approach. Specifically,
our model achieves smaller error rate and great time reduction com-
pared against a series of baselines, including several approximation
algorithms on GED computation, and many existing graph neural
network based models. Our study suggests SimGNN provides a new
direction for future research on graph similarity computation and
graph similarity search1.

1The code is publicly available at https://github.com/yunshengb/SimGNN.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia
© 2019 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5940-5/19/02. . . $15.00
https://doi.org/10.1145/3289600.3290967

KEYWORDS
network embedding, neural networks, graph similarity computa-
tion, graph edit distance

ACM Reference Format:
Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, Wei Wang.
2019. SimGNN: A Neural Network Approach to Fast Graph Similarity Com-
putation. In The Twelfth ACM International Conference on Web Search and
Data Mining (WSDM’19), February 11–15, 2019, Melbourne, VIC, Australia.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3289600.3290967

1 INTRODUCTION
Graphs are ubiquitous nowadays and have a wide range of appli-
cations in bioinformatics, chemistry, recommender systems, social
network study, program static analysis, etc. Among these, one of the
fundamental problems is to retrieve a set of similar graphs from a
database given a user query. Different graph similarity/distancemet-
rics are defined, such as Graph Edit Distance (GED) [3], Maximum
Common Subgraph (MCS) [5], etc. However, the core operation,
namely computing the GED or MCS between two graphs, is known
to be NP-complete [5, 48]. For GED, even the state-of-the-art algo-
rithms cannot reliably compute the exact GED within reasonable
time between graphs with more than 16 nodes [1].

Given the huge importance yet great difficulty of computing the
exact graph distances, there have been two broad categories of meth-
ods to address the problem of graph similarity search. The first cate-
gory of remedies is the pruning-verification framework [26, 48, 49],
under which the total amount of exact graph similarity computa-
tions for a query can be reduced to a tractable degree, via a series of
database indexing techniques and pruning strategies. However, the
fundamental problem of the exponential time complexity of exact
graph similarity computation [28] remains. The second category
tries to reduce the cost of graph similarity computation directly.
Instead of calculating the exact similarity metric, these methods
find approximate values in a fast and heuristic way [2, 6, 9, 28, 35].
However, these methods usually require rather complicated design
and implementation based on discrete optimization or combina-
torial search. The time complexity is usually still polynomial or
even sub-exponential in the number of nodes in the graphs, such
as A*-Beamsearch (Beam) [28], Hungarian [35], VJ [9], etc.

In this paper, we propose a novel approach to speed-up the graph
similarity computation, with the same purpose as the second cate-
gory of methods mentioned previously. However, instead of directly

https://github.com/yunshengb/SimGNN
https://doi.org/10.1145/3289600.3290967

True
Similarity

1.0

0.0

0.8

A

B

C

D

Q

Figure 1: Illustration of similarity-preserving graph embed-
ding. Each graph is mapped into an embedding vector (de-
noted as a dot in the plot), which preserves their similarity
between each other in terms of a specific graph similarity
metric. The green “+” sign denotes the embedding of an ex-
ample query graph. Colors of dots indicate how similar a
graph is to the query based on the ground truth (from red to
blue, meaning from the most similar to the least similar).

computing the approximate similarities using combinatorial search,
our solution turns it into a learning problem. More specifically, we
design a neural network-based function that maps a pair of graphs
into a similarity score. At the training stage, the parameters in-
volved in this function will be learned by minimizing the difference
between the predicted similarity scores and the ground truth, where
each training data point is a pair of graphs together with their true
similarity score. At the test stage, by feeding the learned function
with any pair of graphs, we can obtain a predicted similarity score.
We name such approach as SimGNN, i.e., Similarity Computation
via Graph Neural Networks.

SimGNN enjoys the key advantage of efficiency due to the nature
of neural network computation. As for effectiveness, however, we
need to carefully design the neural network architecture to satisfy
the following three properties:

(1) Representation-invariant. The same graph can be repre-
sented by different adjacency matrices by permuting the
order of nodes. The computed similarity score should be
invariant to such changes.

(2) Inductive. The similarity computation should generalize to
unseen graphs, i.e. compute the similarity score for graphs
outside the training graph pairs.

(3) Learnable. The model should be adaptive to any similarity
metric, by adjusting its parameters through training.

To achieve these goals, we propose the following two strategies.
First, we design a learnable embedding function that maps every
graph into an embedding vector, which provides a global summary
of a graph through aggregating node-level embeddings. We pro-
pose a novel attention mechanism to select the important nodes
out of an entire graph with respect to a specific similarity metric.
This graph-level embedding can already largely preserve the simi-
larity between graphs. For example, as illustrated in Fig. 1, Graph
A is very similar to Graph Q according to the ground truth sim-
ilarity, which is reflected by the embedding as its embedding is
close to Q in the embedding space. Also, such embedding-based

similarity computation is very fast. Second, we design a pairwise
node comparison method to supplement the graph-level embed-
dings with fine-grained node-level information. As one fixed-length
embedding per graph may be too coarse, we further compute the
pairwise similarity scores between nodes from the two graphs, from
which the histogram features are extracted and combined with the
graph-level information to boost the performance of our model.
This results in the quadratic amount of operations in terms of graph
size, which, however, is still among the most efficient methods for
graph similarity computation.

We conduct our experiments on GED computation, which is one
of the most popular graph similarity/distance metrics. To demon-
strate the effectiveness and efficiency of our approach, we con-
duct experiments on three real graph datasets. Compared with the
baselines, which include several approximate GED computation
algorithms, and many graph neural network based methods, our
model achieves smaller error and great time reduction. It is worth
mentioning that, our Strategy 1 already demonstrates superb per-
formances compared with existing solutions. When running time
is a major concern, we can drop the more time-consuming Strategy
2 for trade-off.

Our contributions can be summarized as follows:
• We address the challenging while classic problem of graph
similarity computation by considering it as a learning prob-
lem, and propose a neural network based approach, called
SimGNN, as the solution.

• Two novel strategies are proposed. First, we propose an effi-
cient and effective attention mechanism to select the most
relevant parts of a graph to generate a graph-level embed-
ding, which preserves the similarity between graphs. Sec-
ond, we propose a pairwise node comparison method to
supplement the graph-level embeddings for more effective
modeling of the similarity between two graphs.

• We conduct extensive experiments on a very popular graph
similarity/distance metric, GED, based on three real network
datasets to demonstrate the effectiveness and efficiency of
the proposed approach.

The rest of this paper is organized as follows. We introduce
the preliminaries of our work in Section 2, describe our model in
Section 3, present experimental results in Section 4, discuss related
work in Section 5, and point out future directions in Section 6. A
conclusion is provided in Section 7.

2 PRELIMINARIES
2.1 Graph Edit Distance (GED)
In order to demonstrate the effectiveness and efficiency of SimGNN,
we choose one of the most popular graph similarity/distance metric,
Graph Edit Distance (GED), as a case study. GED has been widely
used in many applications, such as graph similarity search [26,
44, 48, 49, 51], graph classification [34, 35], handwriting recogni-
tion [10], image indexing [45], etc.

Formally, the edit distance between G1 and G2, denoted by
GED(G1,G2), is the number of edit operations in the optimal align-
ments that transform G1 into G2, where an edit operation on a
graph G is an insertion or deletion of a vertex/edge or relabelling

Figure 2: The GED between the graph to the left and the
graph to the right is 3, as the transformation needs 3 edit
operations: (1) an edge deletion, (2) an edge insertion, and
(3) a node relabeling.

of a vertex 2. Intuitively, if two graphs are identical (isomorphic),
their GED is 0. Fig. 2 shows an example of GED between two simple
graphs.

Once the distance between two graphs is calculated, we trans-
form it to a similarity score ranging between 0 and 1. More details
about the transformation function can be found in Section 4.2.

2.2 Graph Convolutional Networks (GCN)
Both strategies in SimGNN require node embedding computation.
In Strategy 1, to compute graph-level embedding, it aggregates
node-level embeddings using attention; and in Strategy 2, pairwise
node comparison for two graphs is computed based on node-level
embeddings as well.

Among many existing node embedding algorithms, we choose
to use Graph Convolutional Networks (GCN) [22], as it is graph
representation-invariant, as long as the initialization is carefully
designed. It is also inductive, since for any unseen graph, we can
always compute the node embedding following the GCN operation.
GCN now is among the most popular models for node embeddings,
and belong to the family of neighbor aggregation based methods. Its
core operation, graph convolution, operates on the representation
of a node, which is denoted as un ∈ RD , and is defined as follows:

conv(un) = f1(
∑

m∈N(n)

1
√
dndm

umW
(l)
1 + b

(l)
1) (1)

where N(n) is the set of the first-order neighbors of node n plus
n itself, dn is the degree of node n plus 1,W (l)

1 ∈ RD
l×Dl+1

is the
weightmatrix associatedwith the l-th GCN layer,b(l)1 ∈ RD

l+1
is the

bias, and f1(·) is an activation function such as ReLU(x) = max(0,x).
Intuitively, the graph convolution operation aggregates the features
from the first-order neighbors of the node.

3 THE PROPOSED APPROACH: SIMGNN
Nowwe introduce our proposed approach SimGNN in detail, which
is an end-to-end neural network based approach that attempts to
learn a function to map a pair of graphs into a similarity score. An
overview of SimGNN is illustrated in Fig. 3. First, our model trans-
forms the node of each graph into a vector, encoding the features
and structural properties around each node. Then, two strategies
are proposed to model the similarity between the two graphs, one
based on the interaction between two graph-level embeddings, the
other based on comparing two sets of node-level embeddings. Fi-
nally, two strategies are combined together to feed into a fully

2Although other variants of GED exist [36], we adopt this basic version.

connected neural network to get the final similarity score. The rest
of the section details these two strategies.

3.1 Strategy One: Graph-Level Embedding
Interaction

This strategy is based on the assumption that a good graph-level
embedding can encode the structural and feature information of
a graph, and by interacting the two graph-level embeddings, the
similarity between two graphs can be predicted. It involves the fol-
lowing stages: (1) the node embedding stage, which transforms each
node of a graph into a vector, encoding its features and structural
properties; (2) the graph embedding stage, which produces one
embedding for each graph by attention-based aggregation of node
embeddings generated in the previous stage; (3) the graph-graph
interaction stage, which receives two graph-level embeddings and
returns the interaction scores representing the graph-graph simi-
larity; and (4) the final graph similarity score computation stage,
which further reduces the interaction scores into one final similar-
ity score. It will be compared against the ground-truth similarity
score to update parameters involved in the 4 stages.

3.1.1 Stage I: Node Embedding. Among the existing state-of-
the-art approaches, we adopt GCN, a neighbor aggregation based
method, because it learns an aggregation function (Eq. 1) that are
representation-invariant and can be applied to unseen nodes. In
Fig. 3, different colors represent different node types, and the orig-
inal node representations are one-hot encoded. Notice that the
one-hot encoding is based on node types (e.g., all the nodes with
carbon type share the same one-hot encoding vector), so even if the
node ids are permuted, the aggregation results would be the same.
For graphs with unlabeled nodes, we treat every node to have the
same label, resulting in the same constant number as the initialize
representation. After multiple layers of GCNs (e.g., 3 layers in our
experiment), the node embeddings are ready to be fed into the
Attention module (Att), which is described as follows.

3.1.2 Stage II: Graph Embedding: Global Context-Aware Atten-
tion. To generate one embedding per graph using a set of node
embeddings, one could perform an unweighted average of node
embeddings, or a weighted sum where a weight associated with a
node is determined by its degree. However, which nodes are more
important and should receive more weights is dependent on the
specific similarity metric. Thus, we propose the following attention
mechanism to let the model learn weights guided by the specific
similarity metric.

Denote the input node embeddings as U ∈ RN×D , where the
n-th row, un ∈ RD is the embedding of node n. First, a global
graph context c ∈ RD is computed, which is a simple average
of node embeddings followed by a nonlinear transformation: c =
tanh((1

N
∑N
n=1un)W2), whereW2 ∈ RD×D is a learnable weight

matrix. The context c provides the global structural and feature
information of the graph that is adaptive to the given similarity
metric, via learning the weight matrix. Based on c , we can compute
one attention weight for each node.

For node n, to make its attention an aware of the global context,
we take the inner product between c and its node embedding. The
intuition is that, nodes similar to the global context should receive

GCNs Att

GCNs Att

Neural Tensor Network

Pairwise Node Comparison

Node-Level
Embeddings

Graph-Level
Embeddings

Graph-Graph
Interactions

Fully Connected
Layers

Predicted
Similarity Score

!"
#$%

+ +
!"

!"
#&%

…
' !

"

(#$%&'((

)*

)+

,*

,+

)$

)*

Figure 3: An overview illustration of SimGNN. The blue arrows denote the data flow for Strategy 1, which is based on graph-
level embeddings. The red arrows denote the data flow for Strategy 2, which is based on pairwise node comparison.

higher attention weights. A sigmoid function σ (x) = 1
1+exp (−x) is

applied to the result to ensure the attention weights is in the range
(0, 1). We do not normalize the weights into length 1, since it is
desirable to let the embedding norm reflect the graph size, which is
essential for the task of graph similarity computation. Finally, the
graph embedding h ∈ RD is the weighted sum of node embeddings,
h =

∑N
n=1 anun . The following equation summarizes the proposed

node attentive mechanism:

h =
N∑
n=1

f2(u
T
n c)un =

N∑
n=1

f2(u
T
n tanh((

1
N

N∑
m=1

um)W2))un (2)

where f2(·) is the sigmoid function σ (·).

3.1.3 Stage III: Graph-Graph Interaction: Neural Tensor Network.
Given the graph-level embeddings of two graphs produced by the
previous stage, a simple way to model their relation is to take
the inner product of the two, hi ∈ RD , hj ∈ RD . However, as
discussed in [38], such simple usage of data representations often
lead to insufficient or weak interaction between the two. Following
[38], we use Neural Tensor Networks (NTN) to model the relation
between two graph-level embeddings:

д(hi ,hj) = f3(h
T
i W

[1:K]
3 hj +V

[hi
hj

]
+ b3) (3)

whereW [1:K]
3 ∈ RD×D×K is a weight tensor, [] denotes the concate-

nation operation, V ∈ RK×2D is a weight vector, b3 ∈ RK is a bias
vector, and f3(·) is an activation function. K is a hyperparameter
controlling the number of interaction (similarity) scores produced
by the model for each graph embedding pair.

3.1.4 Stage IV: Graph Similarity Score Computation. After ob-
taining a list of similarity scores, we apply a standard multi-layer
fully connected neural network to gradually reduce the dimension
of the similarity score vector. In the end, one score, ˆsi j ∈ R, is
predicted, and it is compared against the ground-truth similarity
score using the following mean squared error loss function:

L =
1
|D|

∑
(i, j)∈D

(ˆsi j − s(Gi ,Gj))
2 (4)

where D is the set of training graph pairs, and s(Gi ,Gj) is the
ground-truth similarity between Gi and Gj .

3.1.5 Limitations of Strategy One. As mentioned in Section 1,
the node-level information such as the node feature distribution and
graph size may be lost by the graph-level embedding. In many cases,
the differences between two graphs lie in small substructures and
are hard to be reflected by the graph level embedding. An analogy is
that, in Natural Language Processing, the performance of sentence
matching based on one embedding per sentence can be further
enhanced through using fine-grained word-level information [15,
17]. This leads to our second strategy.

3.2 Strategy Two: Pairwise Node Comparison
To overcome the limitations mentioned previously, we consider
bypassing the NTN module, and using the node-level embeddings
directly. As illustrated in the bottom data flow of Fig. 3, if Gi has
Ni nodes and Gj has Nj nodes, there would be NiNj pairwise in-
teraction scores, obtained by S = σ (UiU

T
j), where Ui ∈ RNi×D

and Uj ∈ RNj×D are the node embeddings of Gi and Gj , respec-
tively. Since the node-level embeddings are not normalized, the
sigmoid function is applied to ensure the similarities scores are in
the range of (0, 1). For two graphs of different sizes, to emphasize
their size difference, we pad fake nodes to the smaller graph. As
shown in Fig. 3, two fake nodes with zero embedding are padded to
the bottom graph, resulting in two extra columns with zeros in S .

Denote N = max(N1,N2). The pairwise node similarity matrix
S ∈ RN×N is a useful source of information, since it encodes fine-
grained pairwise node similarity scores. One simple way to utilize S
is to vectorize it: vec(S) ∈ RN

2
, and feed it into the fully connected

layers. However, there is usually no natural ordering between graph
nodes. Different initial node ordering of the same graph would lead
to different S and vec(S).

Table 1: Statistics of datasets.

Dataset Graph Meaning #Graphs #Pairs
AIDS Chemical Compounds 700 490K
LINUX Program Dependency Graphs 1000 1M
IMDB Actor/Actress Ego-Networks 1500 2.25M

To ensure the model is invariant to the graph representations as
mentioned in Section 1, one could preprocess the graph by applying
some node ordering scheme [29], but we consider a much more
efficient and natural way to utilize S . We extract its histogram fea-
tures: hist(S) ∈ RB , where B is a hyperparameter that controls the
number of bins in the histogram. In the case of Fig. 3, seven bins are
used for the histogram. The histogram feature vector is normalized
and concatenated with the graph-level interaction scores д(hi ,hj),
and fed to the fully connected layers to obtain a final similarity
score for the graph pair.

It is important to note that the histogram features alone are not
enough to train the model, since the histogram is not a continuous
differential function and does not support backpropagation. In fact,
we rely on Strategy 1 as the primary strategy to update the model
weights, and use Strategy 2 to supplement the graph-level features,
which brings extra performance gain to our model.

To sum up, we combine the coarse global comparison informa-
tion captured by Strategy 1, and the fine-grained node-level com-
parison information captured by Strategy 2, to provide a thorough
view of the graph comparison to the model.

3.3 Time Complexity Analysis
Once SimGNN has been trained, it can be used to compute a similar-
ity score for any pair of graphs. The time complexity involves two
parts: (1) the node-level and global-level embedding computation
stages, which needs to be computed once for each graph; and (2) the
similarity score computation stage, which needs to be computed
for every pair of graphs.
Thenode-level and global-level embedding computation stages.
The time complexity associated with the generation of node-level
and graph-level embeddings is O(E) [22], where E is the number
of edges of the graph. Notice that the graph-level embeddings can
be pre-computed and stored, and in the setting of graph similarity
search, the unseen query graph only needs to be processed once to
obtain its graph-level embedding.
The similarity score computation stage. The time complexity
for Strategy 1 is O(D2K), where D is the dimension of the graph
level embedding, and K is the feature map dimension of the NTN.
The time complexity for our Strategy 2 is O(DN 2), where N is the
number of nodes in the larger graph. This can potentially be reduced
by node sampling to construct the similarity matrix S . Moreover,
the matrix multiplication S = σ (U1UT

2) can be greatly accelerated
with GPUs. Our experimental results in Section 4.6.2 verify that
there is no significant runtime increase when the second strategy
is used.

In conclusion, among the two strategies we have proposed: Strat-
egy 1 is the primary strategy, which is efficient but solely based
on coarse graph level embeddings; and Strategy 2 is auxiliary,
which includes fine-grained node-level information but is more
time-consuming. In the worst case, the model runs in quadratic

time with respect to the number of nodes, which is among the state-
of-the-art algorithms for approximate graph distance computation.

4 EXPERIMENTS
4.1 Datasets
Three real-world graph datasets are used for the experiments. A
concise summary and detailed visualizations can be found in Table 1
and Fig. 4, respectively.

AIDS. AIDS is a collection of antivirus screen chemical com-
pounds from the Developmental Therapeutics Program at NCI/NIH
7 3, and has been used in several existing works on graph similarity
search [26, 44, 48, 49, 51]. It contains 42,687 chemical compound
structures with Hydrogen atoms omitted. We select 700 graphs,
each of which has 10 or less than 10 nodes. Each node is labeled
with one of 29 types, as illustrated in Fig. 4a.

LINUX. The LINUX dataset was originally introduced in [44]. It
consists of 48,747 Program Dependence Graphs (PDG) generated
from the Linux kernel. Each graph represents a function, where
a node represents one statement and an edge represents the de-
pendency between the two statements. We randomly select 1000
graphs of equal or less than 10 nodes each. The nodes are unlabeled.

IMDB. The IMDB dataset [46] (named “IMDB-MULTI”) consists
of 1500 ego-networks of movie actors/actresses, where there is
an edge if the two people appear in the same movie. To test the
scalability and efficiency of our proposed approach, we use the full
dataset without any selection. The nodes are unlabeled.

4.2 Data Preprocessing
For each dataset, we randomly split 60%, 20%, and 20% of all the
graphs as training set, validation set, and testing set, respectively.
The evaluation reflects the real-world scenario of graph query: For
each graph in the testing set, we treat it as a query graph, and let the
model compute the similarity between the query graph and every
graph in the database. The database graphs are ranked according
to the computed similarities to the query.

Since graphs from AIDS and LINUX are relatively small, an
exponential-time exact GED computation algorithm named A* [36]
is used to compute the GEDs between all the graph pairs. For the
IMDB dataset, however, A* can no longer be used, as a recent survey
of exact GED computation [1] concludes, “no currently available
algorithm manages to reliably compute GED within reasonable
time between graphs with more than 16 nodes.”

To properly handle the IMDB dataset, we take the smallest dis-
tance computed by three well-known approximate algorithms,
Beam [28], Hungarian [23, 35], and VJ [9, 18]. The minimum is
taken instead of the average, because their returned GEDs are guar-
anteed to be greater than or equal to the true GEDs. Details on these
algorithms can be found in Section 4.3. Incidentally, the ICPR 2016
Graph Distance Contest 4 also adopts this approach to obtaining
ground-truth GEDs for large graphs.

To transform ground-truth GEDs into ground-truth similarity
scores to train our model, we first normalize the GEDs according to
[33]: nGED(G1,G2) =

GED(G1,G2)
(|G1 |+ |G2 |)/2 , where |Gi | denotes the number

3https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
4https://gdc2016.greyc.fr/

https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
https://gdc2016.greyc.fr/

C

55.0%

N

17.6%

O

16.9%

Other

10.5%

(a) Node label distribution of AIDS.

100 101 102

#nodes

0

50

100

150

200

250

300

#
g
ra
p
h
s

AIDS

LINUX

IMDB

(b) Distribution of graph sizes.

0 100 101 102 103

GED

0

10000

20000

30000

40000

50000

60000

70000

#
p
a
ir
s

AIDS

LINUX

IMDB

(c) Distribution of GEDs of the training pairs.

Figure 4: Some statistics of the datasets.
of nodes of Gi . We then adopt the exponential function λ(x) = e−x

to transform the normalized GED into a similarity score in the
range of (0, 1]. Notice that there is a one-to-one mapping between
the GED and the similarity score.

4.3 Baseline Methods
Our baselines include two types of approaches, fast approximate
GED computation algorithms and neural network based models.

The first category of baselines includes three classic algorithms
for GED computation. (1) A*-Beamsearch (Beam) [28]. It is a variant
of the A* algorithm in sub-exponential time. (2) Hungarian [23, 35]
and (3) VJ [9, 18] are two cubic-time algorithms based on the Hun-
garian Algorithm for bipartite graph matching, and the algorithm
of Volgenant and Jonker, respectively.

The second category of baselines includes sevenmodels of the fol-
lowing neural network architectures. (1) SimpleMean simply takes
the unweighted average of all the node embeddings of a graph
to generate its graph-level embedding. (2) HierarchicalMean and
(3) HierarchicalMax [7] are the original GCN architectures based
on graph coarsening, which use the global mean or max pooling
to generate a graph hierarchy. We use the implementation from
the Github repository of the first author of GCN 5. The next four
models apply the attention mechanism on nodes. (4) AttDegree uses
the natural log of the degree of a node as its attention weight, as
described in Section 3.1.2. (5) AttGlobalContext and (6) AttLearn-
ableGlobalContext (AttLearnableGC) both utilize the global graph
context to compute the attention weights, but the former does not
apply the nonlinear transformation with learnable weights on the
context, while the latter does. (7) SimGNN is our full model that
combines the best of Strategy 1 (AttLearnableGC) and Strategy 2
as described in Section 3.2.

4.4 Parameter Settings
For the model architecture, we set the number of GCN layers to
3, and use ReLU as the activation function. For the initial node
representations, we adopt the one-hot encoding scheme for AIDS
reflecting the node type, and the constant encoding scheme for
LINUX and IMDB, since their nodes are unlabeled, as mentioned
in Section 3.1.1. The output dimensions for the 1st, 2nd, and 3rd
layer of GCN are 64, 32, and 16, respectively. For the NTN layer, we

5https://github.com/mdeff/cnn_graph

set K to 16. For the pairwise node comparison strategy, we set the
number of histogram bins to 16. We use 4 fully connected layers
to reduce the dimension of the concatenated results from the NTN
module, from 32 to 16, 16 to 8, 8 to 4, and 4 to 1.

We conduct all the experiments on a single machine with an Intel
i7-6800K CPU and one Nvidia Titan GPU. As for training, we set the
batch size to 128, use the Adam algorithm for optimization [21], and
fix the initial learning rate to 0.001. We set the number of iterations
to 10000, and select the best model based on the lowest validation
loss.

4.5 Evaluation Metrics
The following metrics are used to evaluate all the models: Time. The
wall time needed for each model to compute the similarity score for
a pair of graphs is collected. Mean Squared Error (mse). The mean
squared error measures the average squared difference between the
computed similarities and the ground-truth similarities.

We also adopt the following metrics to evaluate the ranking re-
sults. Spearman’s Rank Correlation Coefficient (ρ) [39] and Kendall’s
Rank Correlation Coefficient (τ) [20] measure howwell the predicted
ranking results match the true ranking results. Precision at k (p@k).
p@k is computed by taking the intersection of the predicted top k
results and the ground-truth top k results divided by k . Compared
with p@k , ρ and τ evaluates the global ranking results instead of
focusing on the top k results.

4.6 Results
4.6.1 Effectiveness. The effectiveness results on the three datasets

can be found in Table 2, 3, and 4. Our model, SimGNN, consistently
achieves the best or the second best performance on all metrics
across the three datasets. Within the neural network based methods,
SimGNN consistently achieves the best results on all metrics. This
suggests that our model can learn a good embedding function that
generalizes to unseen test graphs.

Beam achieves the best precisions at 10 on AIDS and LINUX. We
conjecture that it can be attributed to the imbalanced ground-truth
GED distributions. As seen in Fig. 4c, for AIDS, the training pairs
have GEDs mostly around 10, causing our model to train the very
similar pairs less frequently than the dissimilar ones. For LINUX,
the situation for SimGNN is better, since most GEDs concentrate in
the range of [0, 10], the gap between the precisions at 10 of Beam
and SimGNN become smaller.

https://github.com/mdeff/cnn_graph

Table 2: Results on AIDS.

Method mse(10−3) ρ τ p@10 p@20
Beam 12.090 0.609 0.463 0.481 0.493

Hungarian 25.296 0.510 0.378 0.360 0.392
VJ 29.157 0.517 0.383 0.310 0.345

SimpleMean 3.115 0.633 0.480 0.269 0.279
HierarchicalMean 3.046 0.681 0.629 0.246 0.340
HierarchicalMax 3.396 0.655 0.505 0.222 0.295

AttDegree 3.338 0.628 0.478 0.209 0.279
AttGlobalContext 1.472 0.813 0.653 0.376 0.473
AttLearnableGC 1.340 0.825 0.667 0.400 0.488

SimGNN 1.189 0.843 0.690 0.421 0.514

Table 3: Results on LINUX.

Method mse(10−3) ρ τ p@10 p@20
Beam 9.268 0.827 0.714 0.973 0.924

Hungarian 29.805 0.638 0.517 0.913 0.836
VJ 63.863 0.581 0.450 0.287 0.251

SimpleMean 16.950 0.020 0.016 0.432 0.465
HierarchicalMean 6.431 0.430 0.525 0.750 0.618
HierarchicalMax 6.575 0.879 0.740 0.551 0.575

AttDegree 8.064 0.742 0.609 0.427 0.460
AttGlobalContext 3.125 0.904 0.781 0.874 0.864
AttLearnableGC 2.055 0.916 0.804 0.903 0.887

SimGNN 1.509 0.939 0.830 0.942 0.933

Table 4: Results on IMDB. Beam,Hungarian, andVJ together
are used to determine the ground-truth results.

Method mse(10−3) ρ τ p@10 p@20
SimpleMean 3.749 0.774 0.644 0.547 0.588

HierarchicalMean 5.019 0.456 0.378 0.567 0.553
HierarchicalMax 6.993 0.455 0.354 0.572 0.570

AttDegree 2.144 0.828 0.695 0.700 0.695
AttGlobalContext 3.555 0.684 0.553 0.657 0.656
AttLearnableGC 1.455 0.835 0.700 0.732 0.742

SimGNN 1.264 0.878 0.770 0.759 0.777

It is noteworthy that among the neural network based models,
AttDegree achieves relatively good results on IMDB, but not on
AIDS or LINUX. It could be due to the unique ego-network struc-
tures commonly present in IMDB. As seen in Fig. 10, the high-degree
central node denotes the particular actor/actress himself/herself,
focusing on which could be a reasonable heuristic. In contrast,
AttLearnableGC adapts to the GED metric via a learnable global
context, and consistently performs better than AttDegree. Com-
bined with Strategy 2, SimGNN achieves even better performances.

Visualizations of the node attentions can be seen in Fig. 5. We
observe that the following kinds of nodes receive relatively higher
attention weights: hub nodes with large degrees, e.g. the “S” in (a)
and (b), nodes with labels that rarely occur in the dataset, e.g. the
“Ni” in (f), the “Pd” in (g), the “Br” in (h), nodes forming special
substructures, e.g. the two middle “C”s in (e), etc. These patterns
make intuitive sense, further confirming the effectiveness of the
proposed approach.

4.6.2 Efficiency. The efficiency comparison on the three datasets
is shown in Fig. 6. The neural network based models consistently
achieve the best results across all the three datasets. Specifically,
compared with the exact algorithm, A*, SimGNN is 2174 times faster
on AIDS, and 212 times faster on LINUX. The A* algorithm can-
not even be applied on large graphs, and in the case of IMDB, its
variant, Beam, is still 46 times slower than SimGNN. Moreover,

Figure 5: Visualizations of node attentions. The darker the
color, the larger the attention weight.

Figure 6: Runtime comparison.

the time measured for SimGNN includes the time for graph em-
bedding. As mentioned in Section 3.3, if graph embeddings are
pre-computed and stored, SimGNN would spend even less time. All
of these suggest that in practice, it is reasonable to use SimGNN as
a fast approach to graph similarity computation, which is especially
true for large graphs, as in IMDB, our computation time does not
increase much compared with AIDS and LINUX.

4.7 Parameter Sensitivity
We evaluate how the dimension of the graph-level embeddings and
the number of the histogram bins can affect the results. We report
the mean squared error on AIDS. As can be seen in Fig. 7a, the
performance becomes better if larger dimensions are used. This
makes intuitive sense, since larger embedding dimensions give the
model more capacity to represent graphs. In our Strategy 2, as
shown in Fig. 7b, the performance is relatively insensitive to the
number of histogram bins. This suggests that in practice, as long
as the histogram bins are not too few, relatively good performance
can be achieved.

4.8 Case Studies
We demonstrate three example queries, one from each dataset, in
Fig. 8, 9, and 10. In each demo, the top row depicts the query along
with the ground-truth ranking results, labeledwith their normalized
GEDs to the query; The bottom row shows the graphs returned by
our model, each with its rank shown at the top. SimGNN is able

0 10 20 30 40 50 60 70

Embedding Dimension

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

m
s
e

×10− 3

(a)

0 10 20 30 40 50 60 70

Histogram Bins

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

m
s
e

×10− 3

(b)

Figure 7: Mean squared error w.r.t. the number of dimen-
sions of graph-level embeddings, and the number of his-
togram bins.

Figure 8: A query case study onAIDS.Meanings of the colors
can be found in Fig. 4a.

Figure 9: A query case study on LINUX.

Figure 10: A query case study on IMDB.

to retrieve graphs similar to the query, e.g. in the case of LINUX
(Fig. 9), the top 6 results are the isomorphic graphs to the query.

5 RELATEDWORK
5.1 Network/Graph Embedding
Node-level embedding. Over the years, there are several cate-
gories of methods that have been proposed for learning node repre-
sentations, includingmatrix factorization basedmethods (NetMF [32]),
skip-gram basedmethods (DeepWalk [31], Node2Vec [12], LINE [40]),

autoencoder based methods (SDNE [43]), neighbor aggregation
based methods (GCN [7, 22], GraphSAGE [13]), etc.
Graph-level embedding. The most intuitive way to generate one
embedding per graph is to aggregate the node-level embeddings,
either by a simple average or some weighted average [8, 50], named
the “sum-based” approaches [14]. A more sophisticated way to
represent graphs can be achieved by viewing a graph as a hierarchi-
cal data structure and applying graph coarsening [7, 47]. Besides,
[19] aggregates sets of nodes via histograms, and [29] applies node
ordering on a graph to make it CNN suitable.
Attention mechanism on graphs. [24] uses an attention-guided
walk to find the most relevant parts for graph classification. As a
result, it only selects a fixed amount of nodes out of an entire graph,
which is too coarse for our task, graph similarity computation.
[41, 42] assign an attention weight to each neighbor of a node for
node-level tasks. We are among the first to apply the attention
mechanism for the task of graph similarity computation.
Graph neural network applications. A great amount of graph-
based applications have been tackled by neural network basedmeth-
ods, most of which are framed as node-level prediction tasks [27, 37].
However, once moving to the graph-level tasks, most existing works
deal with the classification of a single graph [7, 29, 47]. In this work,
we consider graph similarity computation for the first time.

5.2 Graph Similarity Computation
Graph distance/similarity metrics. The Graph Edit Distance
(GED) [3] can be considered as an extension of the String Edit Dis-
tance metric [25], which is defined as the minimum cost taken to
transform one graph to the other via a sequence graph edit opera-
tions. Another metric is the Maximum Common Subgraph (MCS),
which is equivalent to GED under a certain cost function [4]. Graph
kernels [11, 16, 30, 46] can be considered as a family of different
graph similarity metrics, used primarily for graph classification.
Pairwise GED computation algorithms. A flurry of approxi-
mate algorithms has been proposed to reduce the time complexity
with the sacrifice in accuracy [2, 6, 9, 28, 35]. We are aware of some
very recent work claiming their time complexity is O(n2) [2], but
their code is unstable at this stage for comparison.
Graph Similarity search. Computing GED is a primitive operator
in graph database analysis, and has been adopted in a series of works
on graph similarity search [26, 44, 48, 49, 51]. These studies focus on
database-level techniques to speed up the overall querying process
involving exact GED computations.

6 DISCUSSIONS AND FUTURE DIRECTIONS
There are several directions to go for the future work: (1) our model
can handle graphs with node types but cannot process edge features.
In chemistry, bonds of a chemical compound are usually labeled,
so it is useful to incorporate edge labels into our model; (2) it is
promising to explore different techniques to further boost the pre-
cisions at the top k results, which is not preserved well mainly due
to the skewed similarity distribution in the training dataset; and (3)
given the constraint that the exact GEDs for large graphs cannot
be computed, it would be interesting to see how the learned model
generalize to large graphs, which is trained only on the exact GEDs
between small graphs.

7 CONCLUSION
We are at the intersection of graph deep learning and graph search
problem, and taking the first step towards bridging the gap, by
tackling the core operation of graph similarity computation , via a
novel neural network based approach. The central idea is to learn
a neural network based function that is representation-invariant,
inductive, and adaptive to the specific similarity metric, which takes
any two graphs as input and outputs their similarity score. Our
model runs very fast compared to existing classic algorithms on
approximate Graph Edit Distance computation, and achieves very
competitive accuracy.

Acknowledgments
Thework is supported in part byNSFDBI 1565137, NSFDGE1829071,
NSF III-1705169, NSF CAREER Award 1741634, NIH U01HG008488,
NIH R01GM115833, Snapchat gift funds, and PPDai gift fund.

REFERENCES
[1] David B Blumenthal and Johann Gamper. 2018. On the exact computation of the

graph edit distance. Pattern Recognition Letters (2018).
[2] Sebastien Bougleux, Luc Brun, Vincenzo Carletti, Pasquale Foggia, Benoit

Gaüzère, and Mario Vento. 2017. Graph edit distance as a quadratic assignment
problem. Pattern Recognition Letters 87 (2017), 38–46.

[3] H Bunke. 1983. What is the distance between graphs. Bulletin of the EATCS 20
(1983), 35–39.

[4] Horst Bunke. 1997. On a relation between graph edit distance and maximum
common subgraph. Pattern Recognition Letters 18, 8 (1997), 689–694.

[5] Horst Bunke and Kim Shearer. 1998. A graph distance metric based on the
maximal common subgraph. Pattern recognition letters 19, 3-4 (1998), 255–259.

[6] Évariste Daller, Sébastien Bougleux, Benoit Gaüzère, and Luc Brun. 2018. Ap-
proximate graph edit distance by several local searches in parallel. In ICPRAM.

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In NIPS.
3844–3852.

[8] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional
networks on graphs for learning molecular fingerprints. In NIPS. 2224–2232.

[9] Stefan Fankhauser, Kaspar Riesen, and Horst Bunke. 2011. Speeding up graph edit
distance computation through fast bipartite matching. In International Workshop
on Graph-Based Representations in Pattern Recognition. Springer, 102–111.

[10] Andreas Fischer, Ching Y Suen, Volkmar Frinken, Kaspar Riesen, and Horst Bunke.
2013. A fast matching algorithm for graph-based handwriting recognition. In
International Workshop on Graph-Based Representations in Pattern Recognition.
Springer, 194–203.

[11] Thomas Gärtner, Peter Flach, and Stefan Wrobel. 2003. On graph kernels: Hard-
ness results and efficient alternatives. In COLT. Springer, 129–143.

[12] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In SIGKDD. ACM, 855–864.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS. 1024–1034.

[14] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. Data Engineering Bulletin (2017).

[15] Hua He and Jimmy Lin. 2016. Pairwise word interaction modeling with deep
neural networks for semantic similarity measurement. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 937–948.

[16] Tamás Horváth, Thomas Gärtner, and StefanWrobel. 2004. Cyclic pattern kernels
for predictive graph mining. In SIGKDD. ACM, 158–167.

[17] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional
neural network architectures for matching natural language sentences. In NIPS.
2042–2050.

[18] Roy Jonker and Anton Volgenant. 1987. A shortest augmenting path algorithm for
dense and sparse linear assignment problems. Computing 38, 4 (1987), 325–340.

[19] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley.
2016. Molecular graph convolutions: moving beyond fingerprints. Journal of
computer-aided molecular design 30, 8 (2016), 595–608.

[20] Maurice G Kendall. 1938. A new measure of rank correlation. Biometrika 30, 1/2
(1938), 81–93.

[21] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. ICLR (2015).

[22] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. ICLR (2016).

[23] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

[24] John Boaz Lee, Ryan Rossi, and Xiangnan Kong. 2018. Graph Classification using
Structural Attention. In SIGKDD. ACM, 1666–1674.

[25] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. 707–710.

[26] Yongjiang Liang and Peixiang Zhao. 2017. Similarity search in graph databases:
A multi-layered indexing approach. In ICDE. IEEE, 783–794.

[27] Tengfei Ma, Cao Xiao, Jiayu Zhou, and Fei Wang. 2018. Drug Similarity Integra-
tion Through Attentive Multi-view Graph Auto-Encoders. IJCAI (2018).

[28] Michel Neuhaus, Kaspar Riesen, and Horst Bunke. 2006. Fast suboptimal algo-
rithms for the computation of graph edit distance. In Joint IAPR International
Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural
and Syntactic Pattern Recognition (SSPR). Springer, 163–172.

[29] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In ICML. 2014–2023.

[30] Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis. 2017.
Matching Node Embeddings for Graph Similarity. In AAAI. 2429–2435.

[31] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In SIGKDD. ACM, 701–710.

[32] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In WSDM. ACM, 459–467.

[33] Rashid Jalal Qureshi, Jean-Yves Ramel, and Hubert Cardot. 2007. Graph based
shapes representation and recognition. In International Workshop on Graph-Based
Representations in Pattern Recognition. Springer, 49–60.

[34] Kaspar Riesen and Horst Bunke. 2008. IAM graph database repository for graph
based pattern recognition and machine learning. In Joint IAPR International
Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural
and Syntactic Pattern Recognition (SSPR). Springer, 287–297.

[35] Kaspar Riesen and Horst Bunke. 2009. Approximate graph edit distance compu-
tation by means of bipartite graph matching. Image and Vision computing 27, 7
(2009), 950–959.

[36] Kaspar Riesen, Sandro Emmenegger, and Horst Bunke. 2013. A novel software
toolkit for graph edit distance computation. In International Workshop on Graph-
Based Representations in Pattern Recognition. Springer, 142–151.

[37] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In ESWC. Springer, 593–607.

[38] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. 2013.
Reasoning with neural tensor networks for knowledge base completion. In NIPS.
926–934.

[39] Charles Spearman. 1904. The proof and measurement of association between
two things. The American journal of psychology 15, 1 (1904), 72–101.

[40] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. InWWW. International
World Wide Web Conferences Steering Committee, 1067–1077.

[41] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. 2018.
Attention-based Graph Neural Network for Semi-supervised Learning. ICLR
(2018).

[42] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. ICLR (2018).

[43] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embed-
ding. In SIGKDD. ACM, 1225–1234.

[44] Xiaoli Wang, Xiaofeng Ding, Anthony KH Tung, Shanshan Ying, and Hai Jin.
2012. An efficient graph indexing method. In ICDE. IEEE, 210–221.

[45] Bing Xiao, Xinbo Gao, Dacheng Tao, and Xuelong Li. 2008. HMM-based graph
edit distance for image indexing. International Journal of Imaging Systems and
Technology 18, 2-3 (2008), 209–218.

[46] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In SIGKDD.
ACM, 1365–1374.

[47] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton,
and Jure Leskovec. 2018. Hierarchical Graph Representation Learning with
Differentiable Pooling. arXiv preprint arXiv:1806.08804 (2018).

[48] Zhiping Zeng, Anthony KH Tung, JianyongWang, Jianhua Feng, and Lizhu Zhou.
2009. Comparing stars: On approximating graph edit distance. PVLDB 2, 1 (2009),
25–36.

[49] Xiang Zhao, Chuan Xiao, Xuemin Lin, Qing Liu, and Wenjie Zhang. 2013. A
partition-based approach to structure similarity search. PVLDB 7, 3 (2013), 169–
180.

[50] Xiaohan Zhao, Bo Zong, Ziyu Guan, Kai Zhang, andWei Zhao. 2018. Substructure
Assembling Network for Graph Classification. AAAI (2018).

[51] Weiguo Zheng, Lei Zou, Xiang Lian, Dong Wang, and Dongyan Zhao. 2013.
Graph similarity search with edit distance constraint in large graph databases. In
CIKM. ACM, 1595–1600.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graph Edit Distance (GED)
	2.2 Graph Convolutional Networks (GCN)

	3 The Proposed Approach: SimGNN
	3.1 Strategy One: Graph-Level Embedding Interaction
	3.2 Strategy Two: Pairwise Node Comparison
	3.3 Time Complexity Analysis

	4 Experiments
	4.1 Datasets
	4.2 Data Preprocessing
	4.3 Baseline Methods
	4.4 Parameter Settings
	4.5 Evaluation Metrics
	4.6 Results
	4.7 Parameter Sensitivity
	4.8 Case Studies

	5 Related Work
	5.1 Network/Graph Embedding
	5.2 Graph Similarity Computation

	6 Discussions and Future Directions
	7 Conclusion
	References

